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Linear signal models a:e commonly used in digital signal processing, leading naturally

to the use of linear subspaces to separate signals from noise. A linear model is often -t rcalistic

model for a signal. In other cases a linear model represents a good approximation to the signal

and is used because of its mathematical convenience.

Some common types of noise can also be dealt with by applying a linear model to the

noise as well as to the signal. We describe noise that obeys a low rank linear model as structured

noise, and derive several signal processing methods based on a structured noise model.

Whereas orthogonal projection operators play a key role in the solution of classical

linear estimation and detection problems, the addition of a structured noise term to the model

leads to oblique projection operators in the new solutions. Because of the importance of oblique

projection operators, one chapter explores their properties.

Subspace identification is the determination of the modes of a linear signal or a struc-

tured noise source based on observed data. We consider the identification of signal subspaces

with no prior knowledge about the signal except that it obeys a low rank linear model. We then

consider signal subspace identification with the prior knowledge that the signal is a superposi-

tion of complex exponentials. We extend these identification techniques to a structured noise

model by considering the identification of structured noise subspaces with varying degrees of

prior knowledge about the signal and the structured noise. We propose a method of adaptively

updating existing signal and noise subspace models based on new data. And we consider the

issue of order selection when identifying subspaces.

Another category of contributions is parameter estimation with structured noise. Here

v. assume that the signal and structured noise subspaces are known or have been identified

fruif l:c;'cA lata. We derive oblique projections for estimating signals with varying prior

knowledge about the parameter distributions.
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We apply these results to the decoding of complex number codes for detection and cor-

rection of impulse errors. In this example we apply both subspace identifcation and parameter

estimation techniques.
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CHAPTER I

Introduction

We present here a collection of advancements in the theory and practice of digital

signal processing, based on the use of linear subspaces. All subspace signal proces-ing techniques

share the common goal of mitigating the effects of noise. Usually they are used in the context

of some kind of an estimation or detection problem, as in the SVD based modification of linear

prediction discovered by Tufts and Kumaresan [TuK82] where the coefficients of a whitening

filter for a given signal are to be estimated. Their method takes advantage of the fact that

linear combinations of complex exponential signals will lie in a subspace whose rank is equal to

the number of different complex exponentials present. It follows that any components of the

received data that lie outside this low rank subspace are due to noise. This is a typical example

of subspace signal processing where the signal of interest is assumed to lie in a low rank linear

subspace.

1But noise comes in many varieties, from the background hiss of an analog magnetic

audio tape to the sharp crackle of lightning striking a telephone wire. Previous techniques

of noise suppression through subspace signal processing have been oriented toward the former

jvariety of noise. They model the desired signal as a vector that lies in a low rank subspace,

and the noise as a random vector that may fall anywhere in the observation space. The next

level in noise modeling is to allow correlated noise by applying a shaped probability density to

the noise vector. We go a step farther and allow total dependence of some noise samples by

I assuming that a significant component of the noise lies in some linear subspace. We call noise

components that lie in a linear subspace "structured noise". Many of the new signal processing

methods we propose deal with structured noise.

I
I
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The application of a linear model to noise is arguably just as reasonable as the appli-

cation of a linear model to signal. For what we consider as our desired signal in one problem

may become interference in the next. Power transmission waves at 60 Iz may be signal to

the power engineer. For most everyone else they represent a ubiquitous form of structured

noise. Lightning may cause impulsive noise (large ampltude noise that affects only a few data

samples), which is also a form of structured noise.

Subspace signal processing in the structured noise model may be divided into two main

parts. First the signal and noise subspaces must be identified. Chapters III through V of this

dissertation deal with the problem of subspace identification. Once identified, the subspaces

must be used to some advantage in solving estimation or detection problems. Chapter VI

applies the subspace models to several estimation problems.

1.1 Overview

This chapter contains a general introduction and outline of the dissertation, a summary

of the research contributions of this work, and an introduction to linear modeling of signals

and noise. We also begin to establish our mathematical notation. Several types of signals that

are well represented by linear models are discussed, and it is shown how a model matrix for a

linear model is formed for several cases.

Chapter II covers some of the specialized linear algebra necessary for the signal sub-

space techniques prcsented in ld4er chapters. Particular emphasis is given to projection opera-

tors, their properties, and how to construct them for given subspaces. The distinction between

orthogonal projections and oblique projections is emphasized, and a coordinate transformation

is derived which relates the two.

In Chapter III we consider the problem of identifying linear subspaces from observed

data. The chapter begins with a critical evaluation of the principle of Maximum Likelihood

(ML), concluding that it is most appropriate for sets of parameters that are uniformly dis-

tributed. or at least not known to be highly nonuniform. We then present identification tech-

niques for both signal subspaces and noise subspaces.
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In Chapter IV we extend the subspace identification techniques of Chapter III to

the case where we have a prior model for the signal which imposes structural constraints

on the subspace estimates. Specifically we consider signals composed of complex exponential

modes whose subspaces must therefore be spanned by Vandermonde type matrices (we follow

Demeure [Dem89] in applying the term Vandermonde to non-square matrices whose columns

are complex power series). We present improvements to two existing algorithms for identifying

such subspaces. We then extend one of the algorithms to deal with the presence of structured

noise.

Order selection, the process of choosing the appropriate rank of a signal subspace

or structured noise subspace, is an important aspect of subspace identification. Chapter V

addresses some problems in subspace order selection.

We consider a special set of estimation problems in Chapter VI. The distinguishing

feature of these problems is the use of linear models for both signal and noise simultaneously.

In other words, they are problems of signal (or parameter) estimation in structured noise. A

common thread in most of the solutions is the appearance of oblique projection operators. The

subspaces identified analytically or by the techniques of Chapters III through V are used to

determine oblique projections to be used for signal processing.

Chapter VII concludes this dissertation with a summary of what has been accom-

plished, conclusions and limitations, and suggestions for extending the research.

1.2 Related Work

The problem of estimating the frequencies of multiple sinusoids is viewed here as

a subspace identification problem. This problem has been addressed by many researchers,

with some of the more notable papers being published by Prony [ProI7951, Rife and Boorstyn

[RiB76], Tufts and Kumaresan [TuK82], Starer and Nehorai [StN88], and Kumaresan. Scharf

and Shaw [KSS86]. The order selection aspect of the subspace identification problem has been

addressed by Fuchs [Fuc88], Tuan [Tua88], Kumaresan, Tufts and Scharf KTS84], Wax and

Kailath [WaK85], and Akaike [Aka74].
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Regarding the parameter estimation problems of Chapter VI, related work has been

published by Marshall [Mar841, [MarS51, [NlarS6l, Wolf [Wol831, Kumaresan [Kum851, and

Scharf, Mathys and Behrens [SMB87] in the context of error correction codes and burst errors.

Our original presentation of the structured noise estimation problems addressed in Chapter VI

is [BeS88].

For a treatment of the classical least squares problem without linearly modeled noise,

see Golub and Van Loan [GVL89] or Lawson and Hanson [LaH74].

1.3 Contributions

We now summarize the original research contributions of this dissertation, indicating,

where appropriate, the foundational work we have built upon. Specific contributions are

1) The emphasis on oblique projection operators as useful tools in signal processing.

2) The equations in Chapter II for construction of an oblique projection with a specified

range and null space.

3) The representation in Chapter II of an oblique projection as coordinate transfor-

mation plus orthogonal projection.

4) The relationship in Chapter II between the singular values of an oblique projection

and the principal angles between its range and null space.

5) The critical evaluation in Chapter III of the Maximum Likelihood principle and the

example using a quadratic equation to illustrate the pitfalls of blind application of ML.

6) The extensions in Chapter III of the ML subspace identification technique of Scharf

[Sch9l]. One extension is to deal with complex data and unknown noise variance. Another is

to deal with a constraint on the identified subspace. The last and most significant extension is

to deal with the presence of structured noise.

7) The presentation in Chapter III of the heretofore unpublished method of Steve

Voran [funpublished notes] for using Total Least Squares to update signal subspace models. and

the extension of that method to allow simultaneous updates of signal subspaces and structured

noise subspaces.
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8) The incorporation in Chapter IV of the technique of Starer and Nehorai [StN881

for enforcing constraints on the AR parameters into the algorithm of Kumaresan, Scharf and

Shaw [KSS86) (the KiSS algorithm, also called IQML [BrM86]) for finding the ML estimates

of those parameters. Also a corrected and clarified presentation of the KiSS algorithm and a

discussion of some implementation issues.

9) The extension in Chapter IV of the derivations by Starer and Nehorai [StN88]

of the gradient and Hessian of the KiSS objective function to the case of complex data and

parameters. Also the derivation of more elegant expressions for the gradient and Hessian leading

to a filtering interpretation. The extension to complex data and parameters is more substantial

than it may first appear, because of the complexity of the equations involved.

10) The extension in Chapter IV of the KiSS algorithm to deal with structured noise.

11) The derivation in Chapter V of a new order selection rule for rank reduction in the

Linear Statistical Model. We first presented this result at the IEEE International Symposium

on Information Theory in San Diego, January 1990, [BeS90].

12) The derivation in Chapter V of a Bayes hypothesis test for order selection in the

identification of structured noise subspaces.

13) The oblique projection estimators in Chapter VI for signal estimation in the pres-

ence of structured noise. We first presented these results at the Asilomar Conference on Signals,

Systems and Computers, November 1988, [BeS88).

14) The application in Chapter VI to decoding block codes over the real and complex

number fields. We first presented this result at the Asilomar Conference on Signals, Systems

and Computers, November 1987, [SMB87],

1.4 The Linear Model: Notation and Terminology

We represent a scalar by any symbol in an italic font, such as n. All vectors are column

vectors and are represented by a symbol with an underbar, such as 1. Contexts requiring a row

vector will be handled with the transpose of a column vector. All matrices are represented by

symbols in a bold font. and are usually upper case, such as H. The subspace spanned by the
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columns of a matrix is represented with angle brackets around the symbol for the matrix, such

as (H).

A superscript T is used to indicate the transpose of a matrix or vector, such as

HT. For complex matrices we must distinguish between the plain transpose and the complex

conjugate (Ilermitian) transpose. We use superscript H for Hermitian transpose and T for

plain transpose. The complex conjugate alone is represented by a superscript *. A circumflex

over any variable generally represents an estimate of that variable, such as 2 for an estimate of

Except where noted all signals referred to in this dissertation are discrete time signals.

In the linear model a signal is characterized as a weighted sum (linear combination) of certain

modes. The set of weights determines a specific signal out of the class of signals which obey

the model.

The convenience and power of a linear algebraic framework apply naturally to vector-

valued signals. But even scalar-valued signals discrete-time can be placed in that framework

by considering finite length (windowed) observations as vectors. Arrange the signal modes as

columns of a matrix H and the mode weights as elements of a vector 0. The product of the

mode matrix and the weight vector is the signal, x = HO. This linear model for the signal

places x_ in a finite dimensional linear subspace known as the signal subspace, and spanned by

the columns of the mode matrix H. The mode weights 0 of a specific signal parameterize its

position within the signal subspace.

Let Z be an n-vector representing the signal of interest. The linear model says that.

x_= HO,

n nxm m

Of primary interest to us is the so-called overdetermined case. where n > m so that there are

more observations than parameters. In this case, the space (H) is the signal subspace.
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1.5 The Linear Statistical Model

When additive random noise affects a linear signal, the resulting received data vector

U obeys what has been called the linear statistical model:

Ut - _ + LI

n nxm m m

Here -v is an n-vector of random noise. This model has found many applications in digital signal

processing, such as those presented by Scharf [Sch9l], Dunn [Dun86], and Buckley [Buc87].

1.6 The Structured Noise Model

A more appropriate model in many situations is the following generalization of the

linear statistical model. This model for the received data is illustrated in Figure 1.1. The

signal parameter 0 sets initial conditions, or excites, the linear system H to produce the signal

K. Noise added in the communication channel is modeled in two parts: the unstructured noise

k, and the structured noise b that results from an underlying process p exciting the linear

system S.

The received data U is the sum

1 = H+ b + _

(1.3)

n n xm m nxt t n

The additional term accounts for what we call structured, or low rank. noise that lies in the

rank t subspace (S). It can be any signal which obeys a linear model but interferes with the

signal of primary interest. In some cases its power may be comparable to or even greater than

the power of the desired signal, resulting in a very poor signal-to-noise ratio when processed
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I Figure 1.1 Block diagram of the structured noise model.

3 according to the ordinary linear staistical model. The additional term in the model allows

knowledge about the structure of such noise to be used to its full advantage in processing the

I received data.

i The matrices H and S are both assumed to have full column rank. In some of the

developments which follow it is also necessary that they be linearly independent, so that the

composite matrix [H S] also has full column rank. It is necessary, but not sufficient, that

m+t < n, (1.4)

where m and t are the widths (and ranks) of H and S, and n is the dimension of the measurement

I space (length of H and S). We do not require that H be orthogonal to S.

* 1.7 Motivation for the Model

The linear model is quite versatile in terms of the types of signals which obey it.

3 The linear model includes the entire family of ARMA impulse responses such as complex

exponentials, sinusoids, damped sinusoids, real exponentials. and sums of any of these. Impulse

and burst signals also fit the framework of the linear model. Sometimes the linear model can

I
I
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serve as an acceptable approximation to a nonlinear signal. One such example is when a

nonlinear signal is band limited. We give some examples at the end of this chapter that show

how several specific signals may be represented in the linear model.

In signal processing, noise is usually treated as a full rank process in the measurement

space. However, in many situations it is more advantageous (or more realistic) to model part

of the noise as a process occurring in a space of lower dimensionality, which is then mapped

into the measurement space by some physical system. When the physical system is a linear

map, the structured noise obeys a linear model. In the measurement space, the resulting noise

is low rank and exhibits a structure dependent on the physical system. Thus we use the terms

low rank noise and structured noise interchangeably.

The structured noise model of Equation 1.3 applies the modeling versatility of the

linear model to both the signal and the noise simultaneously. It is especially appropriate in

any environment containing several competing signals, each of which constitutes noise from the

perspective of the others.

A classic example of competing signals occurs in any multiuser communication chan-

nel, such as the broadcast spectrum. Previous approaches to this problem have often centered

around making the signals of each user orthogonal to all other users' signals. But there may

be limits to the amount of control a designer has over the competing users. Orthogonality

between the various competing signal subspaces is clearly not always attainable, and the struc-

tured noise model gives us a tool for dealing with competing signals without the orthogonality

requirement.I
1.8 Examples

Power line noise can appear in received data as a sinusoid of known frequency (e.g. 60

Hz or 50 Hz). It lies in a rank 2 linear subspace and the two unknown parameters amplitude

and phase determine the position within that subspace. The Vandermonde matrix which spans

I
I



10

this structured noise subspace is

(ei2-fIF)O (e-2'"rf/F)Of(ei2hffF)l (ei-2lrfIF)i
S - ji2T1/F)2 (ei-2 rf/F)2 j(1.5)

(ej-i2 /F)n-
1  (e-j

2 ,f1/F)n-
1

where f is the power line frequency and F = 1/T is the sampling frequency. The two param-

eters which multiply the columns of S are not actually amplitude and phase, but are another

parameterization of the amplitude and phase information.

The character of the problem changes somewhat when the frequency of the interfering

sinusoid is unknown. Frequency enters the equation nonlinearly, through the Vandermonde

matrix S. Determination of frequency is thus equivalent to a subspace identification problem

Iand is treated in Chapter IV.

For a band limited signal, a linear model does not necessarily apply, but an ap-

Iproximating linear model can be constructed using discrete prolate spheroidal wave functions

I(DPSWF's) [Sle78]. Begin by forming the autocorrelation matrix R of the band limited signal.

For a signal with power spectrum

S(ej) ifQwl<f, (1.6)
S~J')=0 if S1< 1W 1<5 ,

the elements of the autocorrelation matrix R are given by

Q sin Qfi - j)I rieg ij) i,jl= ... n. (1.7),x Omega(i - )

The eigenvectors of R are index limited DPSWF's and are the vectors used to form the signal

subspace. Choosing the eigenvectors corresponding to the m largest eigenvalues results in the

m-dimensional signal subspace containing the greatest possible portion of the signal energy.

IWe have given two examples of signals whose linear model may be constructed from

theoretical considerations. With that, we would like to move into the estimation of signal

Isubspaces in situations where theoretical models are insufficient to completely determine the

subspace. But first we must lay some mathematical groundwork. and we turn to that in the

next chapter.

I
I



CHAPTER II

Useful Mathematical Results

In this chapter we present some of the specialized mathematics used in the remainder

of the dissertation. The most significant results presented in this chapter are those involving

oblique projections. These include the oblique projection construction formulas, the coordinate

transformation, and the connection between oblique projections and principal angles between

subspaces.

2.1 Linear Subspaces and Spans

Our signal subspace processing algorithms work in the context of a vector space of n

complex elements. In most cases the same results apply to real n-dimensional space. A set of

m linearly independent vectors in such a vector space spans an m-dimensional linear subspace.

The subspace is the collection of all vectors that can be expressed as a linear combination of

the m spanning vectors. We usually arrange the vectors of a span as columns of a matrix. If

H is such a matrix, we designate the subspace spanned by the columns of H as (H).

The orthogonal complement to a linear subspace (H) is the linear subspace consisting

of all vectors orthogonal to (H), that is, all vectors orthogonal to every column of H. We

use the symbol (H)' to represent the orthogonal complement of (H). In n-space, if (H) is of

dimension m, then (H)' " is of dimension n - m. We also use the term perp-space to refer to

the orthogonal complement of (H).

The intersection of two linear subspaces (H) and (S) is the linear subspace consist-

ing of all vectors that are contained in both (H) and (S). The intersection may be trivial.

containing only the zero-vector, in which case we say that the subspaces are non-o'erlapping.

Non-overlapping does not imply orthogonality between subspaces. Orthogonality is a stronger



12

condition and it does imply a trivial intersection. A necessary and sufficient condition for sub-

spaces (H) and (S) to be non-overlapping is that the composite matrix [H S] be of full column

rank. This of course requires the sum of the subspace dimensionalities to be less than or equal

to n.

2.2 Vandermonde and Toeplitz Spans

A rectangularly windowed ARMA impulse response with m simple poles z, ... z,r lies

in an m-dimensional linear subspace spanned by a matrix of the form:
:0 .. .0

Hrt (2 .1)

Such a matrLx is called a Vandermonde matriz when m = n [GVL89]. We follow Demeure

[Dem89] in using the term Vandermonde to apply also to the nonsquare matrix. Note that the

subspace depends only on the AR parameters, since they alone determine the pole locations.

The position of the ARMA impulse response within the subspace (H) is determined by the MA

parameters.

Let ao ... a, be the A.R parameters, that ,s. the coefficients of the monic (ao = 1)

polynomial whose roots are the pole locations z1 ... z,:

aj :, = 0, i= 1 ... m. (2.2)
1=0

Then the Toeplitz matrix of these coeffi'cients

am, 0
a.

". a.

L 0 a; _

is orthogonal to the Vandermonde matrix H:

AHH = o. '2.4)
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This orthogonality is easily verified by application of Equation 2.2. Since the rank of A is

guaranteed to be n - rn it follows that the orthogonal complement of the Vandermonde (H) of

Equation 2.1 is the Toeplitz (A) of Equation 2.3. That is, (H)"L = (A).

Vandermonde and Toeplitz mat:ices are not generally orthogonal spans for their sub-

spaces. Where it is necessary to find an o.thogonal span for a subspace defined by some

uon-orthogonal span, we use either a QR decomposition of the spanning matrix or its SVD.

2.3 Projection Operators

By the term projection we mean a matrix that is idempotent (equal to its own square):

E' = E. (2.5)

5The eigenvalues of a projection are equal to 0 or 1. However, a matrix whose eigenvalues are 0

or 1 is not necessarily a projection.

3 Orthogonal projections. Most mentions of projections in the literature refer only to

orthoginal projections, the subset of idempotent matrices for which the null space is orthogonal

to the range. In other words, an orthogonal projection whose range is (H) has null space (H)'L.3 A necessary and sufficient condition for a projection to be orthogonal is Hermitian symmetry:

pH = P. (2.6)

I For an orthogonal projection PH whose range is (H) and whose null space is (A) = (H) L. we

have
PHH = H,

(2.7)
PHA = 0.

Oblique projections. Projection matrices which are not orthogonal are referred to as

oblique projections. Oblique projections are idempotent but not symmetric. This more general

3 class of projections rlays a key role in Lhe structured noise problems of Chapters IIl through

VI. Since an oblique projection lacks symmetry, its null space and range are not orthogonal.

I For an oblique projection EH;S whose range is (H) and whose null space is (S), we have

EHsH = H,1 (2.)
EH;SS = 0.

i
I
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We use the following notation for projection operators. Orthogonal projections are

represented as P, usually with a subscript indicating the range. Oblique projections are rep-

resented as E, usually with a double subscript referring first to the range and second to the

null space.

Construction of Projections. We now give equations that will allow projection

matrices to be built from subspace spans for desired ranges and null spaces. Other formulas,

not equivalent to ours, for building oblique projections are given in [KaW89]. Assume that H is

a complex matrix of size n x m having full column rank, and likewise that S is a complex matrix

of size n x t having full column rank. Assume further that (H) and (S) are non-overlapping,

which implies m + t < n.

The well known formula to build an orthogonal projection whose range is (H) is

P. = H(HHH) - HH. (2.9)

The orthogonal projection whose range is (H) ± is given by

PH
J. = I- PH. (2.10)

The last projection operator may be obtained in another way which is of some use in subsequent

I theoretical analyses

H'= lim (I+ HHH)1 (2.11)

The following proof uses the Sherman-Morrison-Woodbury matrix inversion formula [GVL89]:

lim (I + rHH H)
- I

= lim (I-rH(I+rHHH)-iHH)

= lim I-H I+ H)H"(2.12)

k=I - H(HHH)-iHH

To build an oblique projection whose range is (H) and whose null space contains (S)

I
I
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take either of the expressions

EHS = PH(I - s(sHpHsH)-ISHP H

(2.13)
EH;S = H(HHPs.-H)-HHPs-.

Any remainder of Euclidean space, orthogonal to both (H) and (S), is also in the null space of

EHs. These expressions for oblique projections merit verification, since they are, as far as we

know, new.

To verify that the first expression for EH;S is idempotent, consider

EH;SEH;S = PH(I - S(SHPH.LS)-ISHPH-.)PH(I - s(SHPHJ.S)-IsHpH.)

= (PHPH - PHS(SHPH.-S)-ISPH PH)(I - S(SHPHi S)-ISHPH4 .)

(2.14)
= PH(I - S(SHp H S)-IS'PH-L)

= EH;s.

In the preceding sequence of steps we use the fact that PH is itself idempotent and that

PH .LPH = 0. Now we check the range and null space:

EH;sH = PH(I - S(SHPHJ.S)-ISHpH )H

= PHH - PHS(SHPH .S)-IsHPH.. H (2.15)

= H;

EH'SS = PH(I - s(SHPHiS)-lSHPH.L)S

= PH(S - S(SHPH .S)-ISHPH±S)
(2.16)

= PH(S - S)

=0.

Thus KH) is in the range of EH.s and (S) is in the null space. Finally, if A spans the perp-space

to (H, S) then PH .A = A. and PHA = 0, and SHA = 0. so

EH.sA = PH(I - S(SHP H-S)-ISHP 1. )A

= PH1 A - PHS(SHPIf.S)-ISPH A

2.17)
= 0 - PHS(SYPH.S)-1SHA

=0
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and we see that (A) is also in the null space of EH;S. Since we have accounted for all available

Idimensions we have determined that the range of E,;s is equal to (H) and the null space is

equal to (S, A).

To verify that the second expression for EH;s in Equation 2.13 is idempotent, consider

SEH.sEs4 ;s = H(HHPs.iH)-HtHPs.LH(HHPs.H)-lHP si-

- H(HHPs.5 H)-IHMPs. (2.18)

I = EH~s.

Check its range and null space:

EH;sH =H(HHPs.LH)-IHHPs.H
(2.19)--= H;

E,;S= H(HHPs-H)-HHPs5 -S
(2.20)I = 0;

EH;sA H(HHPs.-H)-lHHPs.-A

I = H(HHPsj. H)-lHMA (2.21)

-- 0 .

Thus the second expression is a projection with the same range and null space as the irst

expression. Therefore they are equal.

Another useful pair of identities follows from the two expressions for EH:s in Equation

2.13:

EH~s = PH(I - Es;H), (2.22)

SES;H = Ps(I - EHs). (2.23)

Where EsH is the oblique projection with range (S) and null space (H. A).

Singular values of projections. It is well known that the singular values of an or-

I thogonal projection matrLx are, like its eigenvalues. 0 or 1. This is true because for a symmetric

matrix the singular values are equal to the absolute values of the eigenvalues. Since the 2-norm

of a matrLx is equal to its largest singular value, orthogonal projections have unit 2-norm and

I
I
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will never make a vector longer by projection:

IIPXI- 2 < I112. (2.24)

For an oblique projection this is not the case. We will show in section 2.6 that the singular

values of an oblique projection can be 0, 1 or any value greater than 1. It follows that obliaue

projections can have a 2-norm greater than unity and that IIExI 2 may be greater than I!lI

2.4 A Three-Way Resolution of Euclidean Space

Given a subspace (H) and a subspace (S), define a new subspace (A) as the portion

of Euclidean space orthogonal to both krI) and (S). That is, (A) = (H, S) -. Now any vector in

Euclidean space can be expressed uniquely as the sum of three components, one each in (H),

(S) and (A This resolves Euclidean space into three pieces as shown in Figure 2.1.

<A>

,"PA,.Z

T- -~ 

<>

ES;Hy EH;SY

Figure 2.1 Three-way resolution of Euclidean space.

Corresponding to this geometric resolution is the algebraic identity

I = E-4 s + Es:H + PA. (2.25)

A corollary to Equation 2.25 is

PHs = EH:s + Es:H, (2.26)
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where PHs is the orthogonal projection whose range is (H, S).

Figure 2.1 is also useful to show how the oblique projection EH;s works. We say that

EHs projects U onto (H) along (S,A). By this we mean that EH;5s lies in (H), and that the

difference (I - EHs). lies in (S, A).

2.5 A Coordinate Transformation for Oblique Projection

In this section, we characterize a general oblique projection operator as the composi-

tion of a coordinate transformation and an orthogonal projection, as shown in Figure 2.2. The

required coordinate transformation F is derived to satisfy

EH;s = PHF. (2.27)

-------------------------------------------------- I

J I--------------------------
ES;H

Figure 2.2 A characterization of oblique projections.

Assume we have an oblique projection EHs whose range is (H) and whose null space is

I(S, A), where (A) is defined as (H, S). The coordinate transformation F should rotate vectors

in the subspace (S) to a new subspace (S'), while leaving vectors in (H, A) unaffected. The

new subspace (S') must be orthogonal to (H) to put it in the null space of PH. To complete
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F

Figure 2.3 Building up the coordinate transformation.

the determination of (S'), we also choose it to be orthogonal to (A), resulting in the definition

(S') = (H, A). k2.28)

It is easily seen that (S') has the same dimensionality as (S). This characterization of the

desired coordinate transformation leads immediately to the representation shown in Figure 2.3,

where R. is the required rotation from (S) to (S'). The coordinate transformation is given by

F = EHs + PA + REs;H. (2.29)

The transformation F is not a rotation. A rotation which moves vectors in (S) to (s') is given

by

R = QsQs (2.30)

where Q. is any orthogonal span of (S) and Q., is any orthogonal span of KS'). Note that R

could be any mapping from (S) to (S') and F would still satisfy Equation 2.27. The rotation

was chosen to preserve the length of vectors in the subspace (S).
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2.6 Principal Angles

I Principal angles between subspaces are a generalization of the geometrical concept

of angles between lines and planes. Given two subspaces (H) and (S) of n-dimensional space

there is a set of angles formed between them. The number of such angles is equal to the

dimensionality of the lower rank subspace.

Golub and Van Loan [GVL89] give the following definition for principal angles:

ce = arccos( max max uHv) = arccos(u01j), (2.31)
uE(Is) -(S)

subject 
to

yj1 j =0 j1 .i-i (2.32)

_HvI_ =0 j=1,...,i-.

Note that the definition is recursive in that the vectors u and v for the i" principal angle are

constrained to be orthogonal to all previous mi and _j respectively. Golub and Van Loan also

I show that the principal angles may be computed with the Singular Value Decomposition as

follows. Let UH be an orthogonal span for (H), and Us an orthogonal span for (S). Then the

principal angles between (H) and (S) are given by

ai = arccosA 1 , (2.33)

vhece Ai is a singular value of the product UHHUS.

We extend these results as follows. For an oblique projection EHS formed from sub-

space spans H and S according to Equation 2.13, the singular values of the projection matrix

are directly related to the principal angles between the two subspaces (H) and (S). Let the

singular values of EHs be denoted by o-i and the principal angles by nj. Then

I 1 (2.34)' -sin (ai)"

I To prove this, begin by noting that A, being a singular value of UHHUs means that

A? is an eigenvalue of UHHUsUsHU, = UHHPsUH. Substituting according to Equation 2.33

I
I
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we have cos 2 ai is an e.v. of UHHpsUH

i 1 - cos 2 a, is an e.v. of I - UHHPsUHII
=> sin2 ai is an e.v. of UH (I - P5 )UH (2.35)
=> is an e.v. of (UtHHPs.AUH) - I.

Since eigenvalues are invariant to an orthogonal transformation, this also implies that

s_1 is an e.v. of UH(UHPs.LUH)-1UH (2.36)
-- ! 2sin2 al

The matrix in Equation 2.36 is equal to EH;SEH;S, as can be easily verified by using the

span UH in the second form of Equation 2.13 for EH;S. It therefore follows that (1/sin ai) is a

3 singular value of EH;S and the proof is complete.

A corrolary to Equation 2.34 is that the singular values aj of an oblique projection

3 that correspond to principal angles ai are in the interval [1, oo). Because an oblique projection

is low rank, it also has singular values equal to zero that do not correspond to principal angles.

5Thus, the singular values of an oblique projection matrix may be 0, 1, and any value greater

than 1.I

I
i
I
I

I
I
I
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CHAPTER III

Subspace Identification with No Prior Model

The first task in subspace based signal processing is to identify the signal subspace

and, if appropriate, the structured noise subspace. Sometimes these subspaces can be identified

from theoretical considerations, as for example when the structured noise is 60 Hz power line

noise with unknown amplitude and phase. In other cases we must resort to observed data to

identify the subspaces. Even then we may or may not have enough prior knowledge about the

signal to impose constraints on the subspace estimate. In this chapter we consider the problem

of estimating signal and noise subspaces without structural constraints.

We begin with a general discussion of the Maximum Likelihood (ML) principle in

which we urge caution in the application of ML estimators, especially in the context of the

ML invariance principle. We then present an algorithm for ML estimation of signal subspaces,

and another algorithm for simultaneous MIL estimation of signal and noise subspaces. The

chapter ends with an application of Total Least Squares for updating signal and noise subspace

estimates based on new data. All of the subspace identification algorithms in this chapter make

use of the Singular Value Decomposition (SVD).

3.1 The Maximum Likelihood Principle

We use the principle of Maximum Likelihood (ML) to derive several of our subspace

identification methods. In ML subspace identification a joint probability density is assumed for

the observations !. This density is a function of the signal subspace which is in turn a function

I of some set of parameters a. The likelihood function for a given observation U0 is equal to

the probability density for !L evaluated at the observation ! and considered a function of the

parameters a. It is customary to simplify the likelihood function by dropping any constants

I
I
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that do not affect the location of the maximum in terms of the parameters q. The ML estimate

3 of a is the value of a that maximizes the likelihood function. Since the signal subspace is a

function of a, we can apply the invariance property of ML estimation [Sch9l] to say that we

Uhave also found the ML estimate of the signal subspace.

I must digress to discuss the worthiness (or unworthiness) of the Maximum Likelihood

principle. In some ways the ML principle is philosophically unattractive. Its basic assumption

3 is that whatever observation you make must have been a relatively likely observation. But this

need not be the case-unlikely realizations can and do occur, especially when the variance is

3 large. A more attractive principle of estimation is Maximum A posteriori Probability (MAP).

In MAP estimation, one chooses the most likely parameter values given the observation and a

elprior density on the parameters. If we consider the parameters as random variables, the ML

and MAP rules can be stated in a parallel fashion as

ML: max f~a(Z a);

(3.1)
MAP: max fain(_a1yo).

Thus while ML makes the observation likely, MAP makes the choice of parameters likely.

UUnfortunately MAP estimation requires the additional knowledge of the probability density of

3 the parameters. Since this density is not always known, we cannot always use MAP.

In spite of the philosophical oddity behind ML estimation, ML estimators have some

5desirable properties that make them a good choice when the parameter density is unknown.

First note that ML often corresponds to least squares estimation. More specifically, when the

observations consist of signal plus zero-mean white Gaussian noise the ML estimator is the

same as the least squares estimator wherein the parameters are chosen to minimize squared

error between the observation vector and the mean vector (a function of the parameters). For

3 colored noise, the ML estimator corresponds to a weighted least squares solution. The follom -ig

quadratic form represents both the least squares objective function and the negative log of the

I A better name would be Maximum A posteriori Likelihood. [Sch9l].

I
I
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likelihood function:

(3O - -m)tR-(U - m). (3.2)

Here m is the mean of u as a function of the parameters a, and R is the noise covariance matrix

in the ML problem and R - 1 is the weighting matrix in the least squares problem.

The case for the ML principle is further bolstered by the following argument. We

might express the lack of prior knowledge about the distribution of the parameters by assigning

a uniform prior probability density over the entire parameter domain D (assume for the moment

that the domain is finite in extent). If we do so, the philosophically attractive MAP estimator

becomes identical to the ML estimator. This can be seen by application of Bayes' rule to invert

3 the conditional densities:

maxfgU(q-Iu°) = max fja(l-) (J) (3.3)
2ED aED f tL)

ML and MAP are the same when fa(a) is constant since the ratio on the right hand side of

Equation 3.3 is then constant with respect to the maximization over a.

What if the parameter domain D is infinite in extent? Then a uniform density would

3 have a value of zero everywhere, and the MAP estimator would be undefined. In this case we

cannot make the preceding argument that ML corresponds to MAP, but we can argue that

it doesn't matter because this case is physically unrealistic. To simplify the argument let us

I assume that the parameter is a real scalar a, and the domain D is a subset of the real line

with the Lebesgue measure of D infinite. Then for any finite M > 0, the measure of the set

3 A = {x: Izl < M} is 2M, which is finite. Thus the probability that a E A is 0 under a uniform

density over an infinite D. It is difficult to imagine a parameter in the real world that has

3 probability I of being larger than every finite number M. We conclude that in all physically

meaningful cases, the ML estimator corresponds to the MAP estimator with a uniform prior

I density on the parameters.

This connection between ML and MAP serves as a justification of NIL as long as we

have no reason to reject a uniform prior density of the parameters. But we should be aware

!
I
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that by using ML we are giving tacit approval to a uniform prior. This raises an interesting

I question with regard to the invariance principle of ML estimation. The invariance principle

states that if a is a deterministic function of a,

q= G(a), (3.4)

and if a is the ML estimator of a, then . = G(a) is the ML estimator of 1 [Sch9l]. The

3problem is that for most functions G, it is inconsistent to allow that both a and a are uniformly

distributed. If one set of parameters is uniform we can calculate a specific nonuniform density

I for the other set. The question is whether or not the ML estimators a and 1 obtained by

3tiie invariance principle can be simultaneously appropriate. This question is addressed in the

following example.

5Example: Complex Quadratic Roots. Consider the real second order polynomial

equation

I z 2 + alz + a. = 0, (3.5)

with a complex conjugate pair of roots :i and z,. Suppose we have made some observations

that allow us to estimate the coefficients a, and a, and/or the roots z, and :-. Label the

3 root with positive imaginary part by zi. The estimate of the roots might be expressed by

(p = Izil, 0 = Zzi), or by (a = Re z1, 3 = Imzi). The estimate of z2 is determined by -i. If

Iwe assume the roots lie inside the unit circle, corresponding to a stable causal system, we can

3 specify the domain of each of the three sets of parameters:

i For (p,0): p= {(p,0) :0 < p < 1,0 < 0 < (} (3.6)

For (a,3): D ={(,,3) : 32 < 1,3>0} (3.7)

For (aLa2) :D = {(al.a) : 4<a < 1}. (3.S)

U These parameter domains are shown in Figure :3.1.

I
I
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I D(rho,theta) D(alpha,beta)

I O~ ------ ------ o-------
-211 __ _ _-___ _

-2 0 2 -2 0 2

i rho alpha

i D(al,a2)

I
7 o.--------------... ----------- --------

-1 .

| -2
-5 0I al

I Figure 3.1 Parameter domains for complex quadratic roots.

I f one of these sets of parameters i. jointly uniformly distributed over its Jomain. we

can compute the densities of the other parameterizations using a theorem in Papoulis [Papa,!].

The densities in each row of Tab 3.1 and Figure 3.2 are related by transformations of variables,

each row corresponding to a uniform joint density in one of tie sets of parameters. Note that

when one set of parameters is assumed uniform, the densities of the other parameterizations

3are distinctly nonuniform and in some cases are acrtually unbounded.

As an example of the computations involved in creating Table 3.1. we present the

derivation of the joint density of (p. 0) that corresponds to an assumpl:,n Of iniformitv of

I
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Table 3.1 Density functions for quadratic root parameterizations.

____ _____(_______0)__ (a,,_a2)

(uniform) fj(a,3) = f0 1 (a,a 2 ) =
,

(ce(,e) = In I+,I-a2(, n 4 , S a,I (P) = f.73 a)4n{±a)± n{,'- f+

I :)= 1
fa 32 f(a)(,3) = In -+ -3 aMO() = 1 -V 1 -0 2 j1a

f 0 (uniform) a
!I

f,(a,43) a

f ,(p) = 2pfa 1 (ai) = ,2a

(p 2p f.3 (C 3) = T fa,(a.1) 2 7r

=e f ( 3) fa (a )T

-p s(uniform)
p f,.A a,3) 2

v2 fa...(al,a.) =

(p) = 3p 2  fa(a) = 2(1 - c, 2 ) 1

fa,(a,) = 32

f(O) = '-sinO f.(3) = 33V/I- 3-23

a,a,). Assume that (al,a,) are uniformly distributed in D.,,1 :

3 for (a,,a 2 ) E D.,,faii2 (aia2) =l ,13,9

0 otherwise.

The functional relationship between (a,, a,) and (p. 0) is one-to-one and onto:

P= /a a, = -2pcos(0 = Cos- a, = p .  (3 10)I_2 a,, 0.

The Jacobian matrix for the transformation is

J= I 3 a (3..11)

3And the Jacobian of the transfr0rmation is the Tsolute value of the determinant of the Jacobian

matrix

.J ='hs Jl .2
.v = Yv 470 s- -4) sin ,.

I
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Uniform in (rha.theta) Uniform in (rho,theta) Uniform in (rho~theta)

0 0 01
f(rho theta) f(alpha~beta) f(al~a2)IUniform in (alpha beta) Uniform in (aipbabeta) Uniform in (alpha~beta)

theta rho ba -0 0.
f(rho,theta) f(alphabeta) f(al a2)

Uniform in (al,a2) Uniform in (al a2) Uniform in (al 42)

I beta rhph

If~rho theta) f(alpha~beta) f(al a2)

Figure 3.2 Density functions for quadratic root parameteriz at ions.
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Hence, the joint density of the radius and angle of z, is
{f.,., (-2p cos 0, p') =3,

__ f ( = J(29p' sin 9 for (p, 0) E Dpe (3.13)

0 otherwise.

Next we compute the marginal densities for p and 0 by integration of the joint density.

f,(P) = J 0(p,0)d0 = 3p2, for 0 < p < 1; (3.14)

fe(0)= f,,(p,0)dp= sin0, for 0 0 < -r.

Of the three choices in Table 3.1 for the density of the radius and angle of z1 , this is perhaps the

3most physically realistic. We say this- because this density favors frequencies near the Nyquist

rate and damping coefficients near 1.

3 What does this result imply about frequency estimation? If we know absolutely noth-

ing about prior distributions we might as well use NIL. But if we know enough to say that a

3uniform density is a better description of the polynomial coefficients than of the polar form

of the root locations then we should probably use a MAP estimator based on the density just

3 derived for p and 0. We will comment on how this might be applied in the section on the KiSS

algorithm in Chapter IV.

In the following subsections we derive some ML estimators of subspaces. Their ap-

3 propriateness to a given problem must be assessed according to the principles just discussed.

3.2 ML Signal Subspace ID with No Prior Model

IThe first ML subspace estimation problem we consider is the case where nothing is

3 known a priori about the signal subspace except its rank r. The dimension of the observation

space is n. Assume that m observations of the signal vector are available m > r) and that

5 they obey the linear statistical model without structured noise:

Lic, H0_t k, (I < t < M), (3. 15)

where ,, C , Cr. H - Cnxr

Re(_u ) .N( ,:1) I. I )(v.) : N( .' ).

I
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Assume further that _i is independent of zj for i j. We desire an estimate of the span of H,

the signal subspace. The following result is a slight extension if the work of Scharf [Sch9l] in

that here we take complex valued data and we assume the noise variance c-
2 is unknown and

must be estimated from the data.

We can parameterize the signal subspace by a set of n - r linearly independent unit

vectors a, that are orthogonal to the signal subspace. Define the signal x_ = HO. Then

a_'=0; i=r+1 ..... n, t= 1,... ,m. (3.16)

It is convenient to arrange the vectors a into a matrix:

A = [+ n. _ Cx-r (3.17)

Equation 3.16 then becomes

AHt- t=1 m. (3.18)

The signal 1, is the mean of y, and the density of M, is joint normal:

1 _ .(q _z_.,) H _ ,)(3.19)

=(2-ro 1

Note that the normalization reflects 2n dimensions because y1 is complex.

The log-likelihood function, given Ui. .Urn, is

1 m

L(1 1 ,. ., 92,, , o2) = -mn ln(2ro 2 ) - "(U, - it __t). (3.20)
t= 1

We need to maximize the log-likelihood function under the orthogonality constraints of

Equation 3.18. The Lagrangian to minimize the negative log-likelihood under these constraints

is
1 rn m

£ = 2n ln(24K') - - (u, - _)M(, _ ,) + Z )_fAH_. (3.21)
t=1 t=1

where we have defined the Lagrange multipliers

= E C"_. 
(3.22)
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We would like to optimize C with respect to z. The usual approach is to set the

gradient of £ with respect to x equal to zero. However, the gradient does not exist in this case

because x is complex and the complex conjugate function is not differentiable in the sense of

complex variables. All we really need, though, is that the gradient of 'C with respect to the

real part of Z,, and the gradient of C with respect to the imaginary part of ZT both be zero.

We build a psuedo gradient by taking the gradient with respect to the real part plus j times

the gradient with respect to the imaginary part, and call it the gradient. If we assume for

the moment that a, a, and Y
2 are known, then the gradient (pseudo gradient) of C with

respect to is
is12 = - - ) + AA,. 

(3.23)

I To make the gradient equal to zero we choose

I t - - 0'2 A . (3.24)

The constraints are imposed by writing

SAH( j - o'2AA,) = 2 (3.25)

and solving for A:

A - (AA)-1Ag. (3.26)I 0a2
The corresponding solution for I, is the ML estimator

I2t = (I - A(AHA)-'A")U,
(3.27)

= (I- PA)Y."

The resulting maximum value of the log-likelihood function is

L(A, o'2 ) = -nn ln(2-,r 2) - 1
t= t (3.28)

= -mnln(2,ro') - mTr(PAR),

where R is the sample correlation matrLx: 
2C(2

I= t E Cnxn. (3.29)
rt=1

I
I
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We have compressed the likelihood by maximizing with respect to r, so that it is

no longer a function of 0_ The next step is to maximize with respect to A. Let the sample

covariance matrix R have the orthogonal decomposition

R = UA 2 UH, (3.30)

where U is unitary and A' is diagonal and ordered:

UHU = I

U =[I - l .-r+1U , ECn'""
(3.31)

A2 = diag(A... A+ A Rnxn

1 > A2> - .. > A ,

Then the log-likelihood is bounded by

L(A, .2 ) = ln(2- r2MTr(PAR) _ - ln(2ora 2 ) - 2- A2 (3.32)
i---r+l

for any projection PA of rank (n-r). This bound is achieved when PA is a projection onto the

subspace (U,) spanned by the n - r least dominant eigenvectors of R:

A = U2 = [-L+ - ] ECnx -t

P =n(3.33)

i=r+l

Now since (H) is the space orthogonal to A, we have the maximum likelihood estimate

of the signal subspace:

(0) = (U1 ) = (.... ). (3.34)

This ML estimator fits the conditions given earlier for equality with the least squares

estimator. It was derived under the assumption of additive stationary zero-mean white Gaussian

noise. The corresponding least squares problem is equivalent to finding the rank r matrix closest

in Frobenius norm to the given data matrix Y = [.t ... ,]E ,×,. This problem was solved

by Eckart and Young [EcY36]. The solution is to form the signal subspace estimate by taking

the r dominant left singular vectors of Y. This solution is identical to the ML estimator, which
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takes the r dominant eigenvectors of R = YYH, because the eigenvectors and eigenvalues of R

are the same as the left singular vectors and squares of the singular values of Y.

The last step is to maximize the log-likelihood with respect to a
2 and obtain an

estimate of the noise variance. The maximum value of log-likelihood from the previous step is

L(. 2 ) = -mnln(27r. 2) _ - (3.35)2 A---(3.35)
i=r+l

Differentiating with respect to o,2 gives

aL I m
+nF7rn (2,r) + ' (3.36)

Setting the derivative to zero and solving for .2 produces the ML estimator of variance

n (3.37)

This is almost what one would expect for a variance estimator, except for the normalization by

n. Since we are summing n - r singular values it would seem natural to normalize by n - r.

There is nothing to stop us from changing the normalization, and the resulting estimator might

be better, but it would not be the NIL estimator.

3.3 Constrained ML Signal Subspace ID

We consider now a variation of the Maximum Likelihood signal subspace identification

problem treated in the preceding section. In this section we impose the constraint that the

identified signal subspace be contained in a given higher rank subspace (V). The given subspace

(V) could, for example, be a users allotted portion of a Code Division Multiple Access (CDMA)

information channel. Any signal of significance to the user would lie in (V), but the user may

be interested in identifying a lower rank signal subspace.

While the other constrained identification problems are dealt with in Chapter IV. the

simplicity of this constraint and the appearance of the SVD in the solution tie this problem to

the unconstrained identification problems of the present chapter.

Assume as before that m observations of the signal n-vector are available (m > r)
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and that they obey the linear statistical model without structured noise as given in Equation

3.15. We desire an estimate of the signal subspace spanned by H, under the constraint that

(H) C (V).

As before we can parameterize the signal subspace by a set of n-r linearly independent

unit vectors a that are orthogonal to the signal subspace, and collect the vectors a i into a matrix

A:

AH t =, t = M...,m. (3.38)

Let B be a matrix that spans the orthogonal complement of (V). Now since (H) C (V)

it follows that (B) C (A). Our constraint therefore serves to predetermine a portion of the

subspace (A), so we can represent A as the concatenation of a known portion B and an unknown

portion A which we may take to be orthogonal to B:

A= [B K],
(3.39)

PA = PB + PA-
The Lagrangian for constrained minimization of the negative log-likelihood function

is the same as in Equation 3.21,

I = mn ln(2ro-2) + j- _ +,(3.40)
9=1 t=1

and the development proceeds unchanged through Equation 3.28:

L(A, C2) = -nn ln(2o 2 ) - I 1AL (3.41)

= -mn ln(2-ra
2 ) - mTr(PAR).

The next step is to maximize with respect to the unknown portion of A, and here we

begin to differ from the development in the preceding section. The compressed negative log-

likelihood function in Equation 3.41 may be resolved into a fixed portion for B and a variable

portion for A:

IL(X~o-2) =-mnln(2.-ru2) - 1 mI"B,+tP.,
t=i (3.42)

= -mn ln('.ao-) - -Tr(PBR + PAR).

2(72
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m So the problem reduces to finding A orthogonal to B, or equivalently A in (V), to

minimize

L(.1, er
2 ) = -mn ln(27ro 2 ) - -Tzn(P R)

-rn ln(27ru 2 ) - -- Tr(PkRP&).
2a2

3 But since (3) C (V) we know that

P.Pv = P;, (3.44)

Iso we can replace P; in Equation 3.43 by PkPv where Pv is the orthogonal projection onto

(V). Now let 
. = PvR.Pv. 

(3.45)

3 With this definition of IR the log-likelihood function becomes

L(A, 172) = -inn ln(2,ru 2 ) - - 2-Tr(P;FP;,). (3.46)

The projected sample correlation matrix f. will now play the same role in this constrained

subspace identification problem as 1. played in the unconstrained problem.

3 Let the projected sample covariance matrix R. have the orthogonal decomposition

R. = UA 2 UH, (3.47)

where U is unitary and A2 is diagonal and ordered:
UH = I3 UHU ~

UU IM1* ir+i Mn] E Cnxn

A 2 [uI..._ ... A n " nx (3.48)

A2 = diag(A . ... A2) E Rf × 'f

Since f. has been projected onto (V) it will have a set of zero eigenvalues Ai corresponding to

3 eigenvectors ui that span (B), the orthogonal complement of (V).

As in the unconstrained problem of the last section, the negative log-likelihood is

bounded by an expression involving the sum of the largest eigenvalues of I and the bound is

I
I
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achieved when PA is a projection onto the subspace (U 2) spanned by the n - r least dominant

eigenvectors of R. The projection PA chosen in this way will automatically contain (B) in its

range because the eigenvalues corresponding to (B) are zero.

In summary, the constrained ML estimate of the signal subspace H is the space orthog-

onal to A, which is the space spanned by the r most dominant eigenvectors of the projected

sample correlation matrix R = PvRPv = J "ti(PvUi')(Pvt)H . A simple way to think

about the solution is to project all of the received data 1 onto the given constraint subspace

(V), and then proceed exactly as in the unconstrained problem by forming the sample correla-

tion matrix, taking its SVD, and choosing the space spanned by the r dominant eigenvectors

as the signal subspace. We can go on to estimate a2 exactly as in the unconstrained problem

once the signal subspace has been determined.

3.4 ML Signal and Noise Subspace ID with No Prior Signal Model

Consider the problem of simultaneously identifying the signal subspace and the struc-

tured noise subspace. As before we assume that nothing is known a priori about the signal

subspace except its rank r. However, we cannot make a similar assumption about the structured

noise subspace because there must be some distinguishing feature that allows us to discrimi-

nate between signal and structured noise. For the sake of this development, we assume that

the structured noise is impulsive, having q nonzero elements in unknown positions. It is not

important that q be known a priori.

As before the dimension of the observation space is n. Assume that m observations

of the data vector are available (m > r + q) and that they obey the structured noise model:

t = HO, + SZ + E, (I< t< m), (3.49)

where kt,_ EC" ,  _, EC", HECnxr,

E C, S E (0. 1 }n)  ,

Re(_,) a N,21) iL Im(v,) : N(O, 0721).
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Assume further that gi is independent of yj for i A j. We desire an estimate of the signal

subspace (H), and the structured noise subspace (S). Note the limitation that S is the same

for each of the m observations of the data vector. This would be the situation, for example, in

a sensor array in which some of the sensors were subject to high noise levels or had failed.

Since the number of selection matrices S of rank q or less is finite, we can consider the

merits of each one in turn and choose the best one. Assume for now that a candidate S has

been chosen. Then the derivation of the maximum likelihood estimator of H is an extension of

the preceding section. We proceed in a parallel fashion.

We can parameterize the signal subspace by a set of n - r linearly independent unit

vectors a- that are orthogonal to the signal subspace. Define the signal = , and the

structured noise b, = SO. Then

agz, = 0; i=r+1,... n, t= . m. (3.50)

It is convenient to arrange the vectors a. into a matrix:

A=[ar+i ... a,] E Cn-. (3.51)

Equation 3.50 then becomes

AH , t =1.m. (3.52)

I The mean of M, is the signal plus the structured noise, x, + b, and the density of M,

is joint normal:

1 _ __ .( _-_ _b,)H(U _x_ _b, (3.53)/ )= (2..ro-2)-- - n

I The log-likelihood function, given U,, . . rn, ,, is

L (a,,. -Lm- I,- ) = -mnln(2, ra 2 ) - -- (M,- K - )H(U, - - t). (3.54)I r-t= 1

1 We need to maximize the log-likelihood function under the orthogonality constraints of

Equation 3.52. The Lagrangian to minimize the negative log-likelihood under these constraints

I
I
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is
rn rn

C = mn ln(2ra 2) + Z b,)"(, - _- X. , (3.55)
2a21

where we have defined the Lagrange multipliers

I)(r+1) 1
= E C - r. (3.56)

If we assume for the moment that a ... b,, and a'
2 are known, then the

gradient of£ with respect to x is

1
r L 2- .(1, - _ - b) + AA,. (3.57)

To make the gradient equal to zero we choose

1C = lit - b, - T2 AAt (3.58)

The constraints are imposed by writing

-AI(.t - o-,'2A J = 2 (3.59)

U and solving for A:

I - (AHA)-AH(, - bt). (3.60)

The corresponding solution for x, is the ML estimator

: = (I - A (A H A )l AH )( U - b )I (3.61)

=(I- P,)(at -).

The resulting maximum value of the log-likelihood function is

L(A........., 2) = -mn ln(2-,'r-) - -L -b (3.62)
t=1 (3.62)

= -mn ln(2,ro 2) - nTr(PAR)

I where .is the sample correlation matrix with the structured noise subtracted out:

3 R. (UZQ - M)(, - M1 ~Cfl (3.63)

t---

I
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We have compressed the likelihood by maximizing with respect to zt so that it is

no longer a function of 9,. The next step is to maximize with respect to A. Let R have the

orthogonal decomposition

R=UA U (3.64)

where 0 is unitary and A is diagonal and ordered:

U U=I

=J [-M .u, , ----1 + 1 " ). E (C n x

~2 (3.65)
2 diag( . R ( 6

2 > 2 >... > .

Then the log-likelihood is bounded by

. ) = -mn ln(27o- 2 TrPRL(A,! I,., a) ra -a l( 2) - 2-Tr(PAI)

n (3.66)
< -mln(2-r- 2) - - 2

z=r+t

for any projection PA of tank (n-r). This bound is achieved when PA is a projection onto the

subspace KU.2) spanned by the n - r least dominant eigenvectors of FU

A. = U.2 =~ r [_, ... _U, ] C nx- r

PA= U 2 U 2 = (3.67)

i=r+l

Next we minimize the negative log-likelihood with respect to the structured noise

b:= S!. This is most easily accomplished by decomposing the correlation matrix R. onto the

orthogonal complements (S) and (S) -:

R P Ps+PS.LRPs. + PsRPs.,. + Ps.LRPs

m _. [(Psu, - S~t)(Psu, - Sgh)H + Ps5 .Q!,FhPs.] (3.68)

+ PsRP!. + Ps .RPs .

The first two terms of the decomposition are nonnegative definite, and the second term is

constant with respect to 2, The last two terms, the cross terms, are nilpotent. The best choice

of 2, makes all terms but the second term zero, which will mininize the sum of the trailing
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singular values of R. iL Equation 3.66. To make the first term and the cross terms zero, we

choose

. = (SHs)- mS~u' (3.69)

This implies that

= Ps4, (3.70)

and

S t  s (3.71)
: = Ps . RPs -.

The last step is to maximize ,ile log-likelihood with respect to 72 and obtain an

estimate of the noise variance. The maximum value of log-likelihood from the previous step is

L ( ') = - m n ln ( 2 ,r 2) -( 3 .7 2 )
S(3.72)

= -mn ln(2,r 2 ) --, Tr (PAPs,RPsJ. PA).

Differentiating with respect to a2 gives

2 =mn ( + 2 4. (3.73)

Setting the derivative to zero and solving for a 2 produces the ML estimator of variance

2n .Z "

i~r+l

1 Tr (PAPsJ. RPs.PA) (3.74)
2n

_lTr ( P(H.s)'-RP(.s -

--2n "HS,

The algorithm to estimate the signal and structured noise subspaces and the noise

variance may be summarized as follows. First form the sample correlation matrix from the

received data vectors. Then, for each possible structured noise matrix S. perform the remaining

steps and choose the S for which the final likelihood function is maximized. If the rank of S is

not known, it will be necessary to include an order penalty tern, -.s an rder selection rule. For

each candidate S. form the projected correlation matrix ft = P ls" RP S and find its orthogonal

I
I
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decomposition. The r dominant singular vectors of ft span the candidate signal subspace. The

sum of the trailing n - r singular values is the negative log-likelihood corresponding to that

choice of structured noise subspace S.

It is noteworthy that thib algorithm will always produce an estim-tte of the signal

subspace that is orthogonal to the estimate of the structured noise subspace. This is not, ideal,

but can be attributed to the low level of prior knowledge about the signal and structured noise.

3.5 Total Least Squares for Signal Subspace Updates

In this section we describe how Total Least Squares provides a natural way to update

signal subspace estimates based on new data. The idea is due to Steve Voran [unpublished

notes]. In the next section we extend the idea to the structured noise model.

In the theory of Total Least Squares, the prior model

(3.75)

HO, H E Cnxfn

is replaced by the posterior model

u= Piq+ (I -Pl)uL

= -rLs + -rLs (3.76)

"TLS = H-rLS"

The projection P, is chosen to minimize the total of the sum of the squares of the elements

of -TLS = (I - Pl),y plus the sum of the the squares of the elements of AH = (I - PI)H

(thus the term Total Least Squares). In the pc.;terior model, H is the estimated (corrected

or updated) signal model, TLS is the estimated signal component and PTLS is the estimated

noise component:I A = P, H

I--TLS = PIU = P Z- + Pik (3.77)

L/TLS = (I - P)U = (I - PI)X -(I - P,)v.

To'e rightmost equalities differ from the LS case because the projection P, is not matched to

I rle subspace (H), but is instead matched to (IH,. a kind ,)f compromise between H and the

I
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observation U. From x = HE we deduce that the TLS estimate of E is

&S .( )-H !TLS (3.78)

The subspace (A) on which the TLS solution is based can be found from the Singular

Value Decomposition (SVD) of the matrix formed by concatenating H and U as [H U]:

[H1= UEVH. (3.79)

Observe that the TLS error is

=e2 .1-ITLS[ 2 + IIAIlF

= 1l(I - P1 )[H U]112

I = Tr ((I - P 1 )[H y][H QlH(I - P 1 )} (3.80)

= Tr {(I - P 1 )UEVHV juH(I - P 1 )}

= Tr {(I - Pt)UEI2 UH(I - P1 )}

3 It is clear that to minimize the TLS error e2 in the preceding expression, we should choose P 1

to be aligned with the m dominant left singular vectors in U which correspond to the rn largest

singular values in E, or equivalently choose the rank-one projection (I- P 1 ) to be aligned with

the one least dominant left singular vector. The solution is unique provided that the smallest

singular value is not repeated. If the singular values are ordered from largest to smallest we

5 can writ the solution for P 1 as

P1 =UiUM,

(3.81)
where U = [U1 u].

Thus. Total Least Squares can be used to update a given signal subspace (H) each

time a new data vector is received. If we wish to change the rate at which the signal subspace

adapts to new data, we can postmutiply [H 3) by a diagonal weighting matrix before taking its

SVD.

I 3.6 Total Least Squares for Signal and Noise Subspace Updates

I
I
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In this section we extend the TLS subspace updating technique of the preceding section

to the structured noise model. Suppose we have a signal and structured noise model embodied

in given matrices H and S, but we know that the model matrices may be subject to error. This

would be the case, for example, if the model were the result of a subspace identification process

or if the actual subspaces were slowly varying in time. In this case, the technique of Total Least

Squares (TLS) allows both signal and structured noise subspaces to be updated based on new

* data.

We wish to approximately solve the overdetermined linear system given by:

I HO + S!, (3.82)

where we are givenI u E C'x1

H E C'xm

S E C xt,

and

m + t <7n.

I That is, we wish to find 9 and O for which

(It + 6) = (H + 1 -W+ (S + AS), (3.83)

3 and the total sum of the squared perturbations

= I[AH AS -]IIF (3.84)

is minimized.

Observe that the system can be rewritten in a form which makes it equivalent to the

original Total Least Squares (TLS) problem solved by Golub and Van Loan. We write

! 2z[H S)[] (3.85)

I and apply their TLS solution, but with additional partitioning of the matrices involved. That

U
I
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is, let the matrix C E Cnx(rn+t+ !) be defined as the concatenation of H, S, and U:

1 C = [H S 1. (3.86)

Write the singular value decomposition of C as

3 C = UEVH '3..)

where we partition the matrices as

IU I [ U 2 A] ni

I rnm+t 1 (.8

VII 1t21 m
V = V 21 L22  t

m+t V32 1

f The singular values in E are sorted with the largest in the upper left and the smallest in the

lower right for the partitioning. Again the solution is unique only if there is a unique smallest

singular value.

The TLS solution for the parameters is

1

V32  (3.89)

I with V32 assumed nonzero. V32

3 The form of the TLS solution given by Zoltowski [Zol87] allows the perturbations to

be easily characterized. Define the perturbed variables

fi = (H + AH)

S = (S + As) (3.90)

I= (u + D.

and the orthogonal projection p = U1U.

I

I
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Then by applying Zoltowski's work, we find thatIH =PH

S = (3.92)

This means that when the original overdetermined system of equations is projected onto (U1),

the exact solution to the projected system is the TLS solution to the original system. We have

U- H!+ SO

SPtiu "Pi H+ PiS (3.93)

'The estimated signal is

i- = H. (3.94)

I Let E h ; be the oblique projection with range (H> and null space containing 0S) as given in

Chapter II. Application of E,;, to both sides of Equation 3.93 gives another way to write the

signal estimate:
Eh; .== Eh;H6+Er.; S€

(3.95)

So 2 can be obtained with an oblique projection.

The complete system for realizing the above equations is shown in Figure 3.3. The

H and S outputs of the system represent updated versions of the signal and noise subspaces,

based on the new data U. Recall that we began the TLS problem with the basic assumption

that there may be errors in H and S, so these outputs can be viewed as an attempt to correct

those errors and bring the model into agreement with the observations.

It is clear that the updated signal subspace should depend on the current signal

subspace and the new data. But the new signal subspace in the TLS update depends also on

the structured noise subspace (through the SVD). Conversely, the signal subspace affects the

update of the structured noise subspace. That the structured noise has any influence on the

I
I
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A

SS

Figure 3.3 TLS with Structured Noise.

new signal subspace seems undesirable at first, since the goal of the structured noise model

is to reduce the impact of the structured noise on the signal estimate. But we must consider

that the new data has components of both signal and structured noise, and that the signal

component cannot be isolated without using the structured noise subspace (e.g. through the

oblique projection). This situation justifies some interaction between signal and structured

noise subspaces in the update, although the actual interaction may not correspond exactly to

the justified interaction.

Partially fixed subspace models. We now extend this technique to deal with the

case where only part of the model is subject to error. As a basis for the development assume

that the structured noise matrix S is still uncertain, but the signal matrix H is known to be

without error. In this case. AH must be zero.

The key to solving the TLS problem for this case is the following observation: The

perturbations and the columns of As must be orthogonal to (H). This is so because £ they

I
I
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were not, each could be resolved into a component in (H) and a component in (H)'. The

component in (H) could be absorbed into the H2 term with a suitable change to 0 and the

sum of squared perturbations would be reduced in so doing. Since the solution must give the

Iminimum sum of squared perturbations, the (H) components must be zero.

Assume the solution is

(U+ -) = HW+ (S + As)_. (3.96)

Now operate on the above equation with PH.' the orthogonal projection onto (H)-

3 PH(U + 1) = PH.H + P.'.(S + As)'

5 = (PH".U+ ) = (PH's +As)' (3.97)

where we have defined
P H(.

(3.98)
i S =PH..S.

The last form of the projected equation above suggests an ordinary TLS problem of

the Golub and Van Loan variety. Now we claim that when we solve the projected TLS problem

above, we have also solved the unprojected TLS problem. Any set of parameters and pertur-

bations which gives equality before projection must give equality after projection. Conversely,

for every set of parameters and perturbations which gives equality in the projected equation.

3 there exists a which will give equality in the unprojected equation (i.e., the component in

(H)' is already equal and ? can be chosen so that the component in (H) is also equal). For

I equality we need

3 H= (H H)- 1 H", (3.99)

so j is fixed during the optimization process. In both equations the optimization occurs over

3 the same variables (Z As, and 6), with the same domain, and the same constraint (equality in

both the projected and unprojected equations). Since the objective function is also the same

(minimization of the sum of squared elements in [as 61), the problems are equivalent.

!
I
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Now we find j and As by solving the TLS problem of the projected equation. Let P1

be the orthogonal projection whose range is spanned by the first t left singular vectors of fS ].

Then we have

(3.100)

A s = -(I - PS)§ (Pi - PH -)S.

If we define P, as

P1 = (Pt + PH), (3.101)

then the following relationships hold:

3 fl = P1 H = H

= P'S

(3.102)

= Pilu

_= Ek.gi = E ~

The oblique projection Ef ;i is defined in Chapter II. It is easy to see that the matrix P1 defined

above is an orthogonal projection. The main difference between this problem and the problem

where H was also subject to error is in how P 1 is determined.

There is a more general problem wherein there may be some columns of H known

exactly and some subject to error, and likewise for S. This problem is not really much different

I from the last. The solution process is to project the equation onto the subspace perpendicular

to the known parts of the model, solve the projected TLS problem for P1 and add back theI
projection onto the known parts to arrive at the projection P1 for which the above relations

hold.

I
£
I
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CHAPTER IV

Subspace Identification with a Prior Model

In this chapter we present algorithms for identification of signal and noise subspaces

that are constrained to obey a prior structural model. We consider signals composed of linear

combinations of complex exponentials, and we consider structured noises composed of linear

combinations of impulses.

4.1 ML Signal Subspace ID with Complex Exponential Model

In this section we give a new presentation of the "KiSS" algorithm of Kumaresan,

Scharf and Shaw [KSS86] (see also [EvF73], [BrM86], [McC89], and [StN88]). Our presenta-

tion includes a unified approach to implementing the most commonly used constraints on the

parameters, and a discussion of when the circulant matrix approach of Kumaresan can and

should be used for finding the necessary matrix inverses.

Let the signal be a sum of complex exponential modes, a scalar valued time series:

X(t) 0 ,--. (4.1)
:=1

Suppose the observed data consists of signal plus noise for n consecutive time indices:

y(t) = x(t) + v(t), t = , 2. n. (4.2)

Arrange these time series into vectors as

U (1)1 - = V. (4.3)[y(1) _ x(ri)J [:;z]
The signal model may be arranged in matrix form as

U_ = HO, (4.4)
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where the signal subspace is determined by the (non-square) Vandermonde mode matrix

I r z2 '" * Zl

H Z 2 . r EC m , (4.5)

1 z2 "" M _

and the position within the signal subspace is parameterized by

0 2 E C[ .  (4.6)

Kumaresan, Scharf and Shaw [KSS86] have pointed out that the perp-space to the signal

I subspace is spanned by the Toep!itz matrix

Sra. 0

A = a; Cn×-m, (4.7)

|~ o ;
where the elements ai are the coefficients of a polynomial whose roots are the zi 's:

Z ai zT = 0, j1 .m. (4.8)i=O

3 We have

AHH = 0. (4.9)

I We wish to estimate the parameters ao ... a, that determine the signal subspace

through Equations 4.8 and 4.5. A least squares approach to estimating these parameters was

proposed in [KSS86], equivalent to

m n I- 1U_2, (4.10)

where _ = H(a)_. Bresler and Macovski [BrM86] then reported the same algorithm for min-

3imization of Lhe same objective function, calling it Maximum Likelihood estimation. It is. of

course, both least squares and ML when the noise is additive. whit,. zero-mean, stationary and

Gaussian.

I
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It is convenient to arrange the parameters into a vector:

a . (4.11)
an

After compression on 0, the negative log-likelihood function for parameters ao.. a,, given

observations t, is

L(a) = iUPA = UHA(AHA)-AH. 
(4.12)

While L is a simple quadratic form in the data U, we need to minimize it with respect to the

parameters a. Since L(a) is nonlinear in a, iterative numerical approaches have been used

to solve it. It is, in fact, a rational polynomial function in the parameters ao ... a,, with

numerator and denominator of order 2(rn - m). This implies that we could upper bound the

number of local minima of L(a). One can envision such a bound being useful for locating the

global minimum with certainty, although we have not proposed any such algorithms.

Let us digress a moment at this point to discuss how the principles we developed in

Section 3.1 for application of NIL estimators apply to the KiSS problem. The objective function

of Equation 4.12 is appropriate if the parameters a are uniformly distributed, or at least if we

3 have no reason to believe that they are highly nonuniform. But if, for example, uniformity is a

better description of the polar coordinates of the root locations then the appropriate estimator is

a MAP estimator based on the derived density of the parameters a as in the example of Section

3.1. The objective function for this case is obtained by adding to Equation 4.12 a term equal

to the natural log of the density function of a. This kind of a change in the objective function

3 means that the KiSS algorithm we are about to describe would not apply. Depending on the

nature of the density function for a it may be possible to use a KiSS-like principle to derive a

Sminimization algorithm, namely to hold part of the expression in a constant for each iteration

and optimize with respect to the remaining occurrences of a. Even if this is not feasible it may

still be possible to compute the derivatives needed to find the minimum by Newtons method as

described later in this chapter. Finally, if even the derivatives are intractable. Newton's method

can be implemented with finite difference approximations to the derivatives.

I
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The key to the KiSS algorithm for minimizing the quadratic form of Equation 4.12 is

to rewrite the product of the Toeplitz matrix A and the vector I as follows:

A Uu=Ya, (4.13)

where Y is a Toeplitz data matrix defined as

y(m + 1) ... y(1)

y(m + i
Y . (4.14)

y(n - m)

L y(n) ". (n m

Equation 4.13 can be viewed as an expression of the commutativity of convolution. With this

identity, the objective function becomes

L(a) = aHyH(AHA)-yqa. (4.15)

Then at each iteration, the matrix (AHA)- is held constant and the resulting quadratic form

in a is minimized. At the zeroth iteration, (AHA) - ' is set equal to the identity matrix. At

each subsequent iteration, it is built from the solution to the previous iteration. It is interesting

to note that the solution at the first iteration is equal to the Prony method.

Constraints in the KiSS algorithm. Prior knowledge about the signal may lead

us to impose constraints on the locations of the roots zi. The constraints of interest are spelled

out clearly in [BrM86]. Starer and Nehorai [StN88] introduced a simple, yet powerful, model for

implementing most of these constraints in the context of using a Newton method to solve the

same minimization problem we are considering. Those constraints that cannot be imposed by

the method of Starer and Nehorai have generally been considered too difficult to enforce at all

(see [BrM86I and [KSS86]). Starer and Nehorai impose the tractable constraints by modeling

the parameter vector a as an affine transformation of a minimally dimensioned new parameter

vector _: T - (4.16)

I =Tci4c (4.16) n mi al ~ N
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where T is a constant rectangular matrix, and : is a constant vector. In our extension of this

constraint to complex valued parameter vectors we take a_ to be real valued, letting T map it

into the appropriate complex values.

We now give explicit forms of T and c to implement the constraints of interest. The

matrix J,, is the n x n exchange matrix (reverse permutation):

J= - 11 E RnXn, (4.17)
1 0

and I, is the n x n identity matrix. A column vector of n zeros is represented by a".

Constraints for nontriviality. The "nontriviality" constraint requires ao = 1 to

ensure that the corresponding polynomial is monic and of degree m. To implement the non-

triviality constraint and map real c into complex a we take

T-[- II]j ' _=[-_m , (4.18)

so that the relationship between a and a may be expressed as

" Rea,

Rea, + jIma, i + jacfm +I Ream (4.19)
_ . ' - Im a4

I Ream + j Im am ay + ja2m

. Im am

Constraints for modeling undamped complex sinusoids. When modeling un-

damped complex sinusioda signals, we wish the roots of a to lie on the unit circle. A necessary,

but not sufficient, condition for the roots of a to lie on the unit circle is complex conjugate

symmetry of the coefficients

a, = a,-,. (4.20)

The sufficient conditions for roots on the unit circle cannot be imposed with this kind of

affine constraint. To require complex conjugate symmetry of the coefficients. along with the

nontriviality constraint Reta 0 ) = I. we consider two iubases. For rn odd we take '7 = f m - 1)/2

I
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and

j~q+1

T J-- iqq[ (4.21)

-jJq+l

so that
a, + jaq+2 Re a1

Iq + jaCm Re aq (422)
q- jem - Im a0

I aJIk)aq+2 Im a,
I - jaq+ I

For m even we take q = (m- 2)/2 and

jq+i
I c' = (2q+_, (4.23)

Jq -q JJq+l I

so that + jaq+2

1f 1 JOq+3
c m [Rea,

~aq + ja,

a a q+i R = mao (4.24)
aq -cr ja a

al j~ej|tirr a,+ .I aji - aq+ajLIra+

L - ja,+2

5 Constraints for real data. If the data is ral, then the coefficients a should be real.

For real data with only the nontriviality constraint we take

T 1. (4.25)

Iso that

I a = A]_=[] .(4.26)
a.

I
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Constraints for real undamped sinusoids. For real data with constraints of

nontriviality and symmetry,

Iai = a,-j, (4.27)

we again consider two subcases. For m odd we take q = (m - 1)/2 andI

q= 

(J28)

I so that

U ~' 1
c= -= (4.29)

q Laq J

5 For m even we take q = (m- 2)/2 and

T- a2q1] (4.30)IT
3 so that

a1

a', a I

a =Oq+1 2 = + •4.?1)

a1

The KiSS algorithm. With the affine constraint of Equation 4.113. the objective

function of Equation 1.15 becomes

L (k) = (cif + or 
1H )yHAi()IAi )- I Y(T_') -4.32)I

I
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Q=y11[A(2L)H A(;j] Y, (4.33)

and at each iteration fix Q iQ andi minimize

L (!I) =(jH +±jiHTN)Q,(Tq+ g). (4.34)

T1his i,> a quadratic optimizatlon problem. Setting the derivative of' Lj(q-) equal to zero;

72aLjoj) 2T'MQ,Thj+2f 2rQ, 0. (:5

Since jg is real valued, 17gL~L must be real valued, and the new QL for iteration i is

In summary, the constrained (i.SS algoritbrn attempt,. to minivmize L(,-) by the fol-

lowing steps;

I. Build aproit YT, C.

2. Set V=yM Y

3. Repeat until cotivergene:

.3a. Let -.<Re.(THqT) 1 Re(THQ ,)

3b. Let T, ± .

3c. Build A from a.

3d. Let Q =Yl(AHA)-'Y.

4. Stop.

Conivergence is considtcred to be reachedi when no elenit of a clang~yi by mor-e than somne

specifiwd toktran-.e fromn -ne iteration to the next We inote thAt while the KISS algorithi is

known to be :effeotive Mn prActice, flhere is nio guaraiitee that it will -onv,,rge nrar thf? global

inkiniun of L(Li,),

Our MA fAJTIcode fo~r time Ki. S algorim km- is given in .Ap(fix A.

Extanple: Secowld order KiSS Ajoctivc funrtion. We may gain stom-e in~iglt
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into the nature of the KiSS objective function of Equation 4.32 by examining it for a simple case.

When a consists of two real parameters we can generate a 3-dimensional plot of the objective

5 function versus a, -nd a 2 . Such a plot is shown in Figure 4:1, for a data set containing 25

samples of two complex exponentials and a second order model constrained to have complex

3 conjugate symmetry (this signal is the one used in (TuK82). You can see some tendencies

toward symmetry about the global minimum, as well as the appearance of several local minima

5both on the "plateau" and in the "canyon". The "ridge" surrounding the global minimum

would tend to foil descent based algorithms from most starting points. The KiSS algorithm.

I however, is not descent based, and usually converges near the global minimum except below

the threshold SNR discussed later in the simulations section.

I
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Figure 4.2 shows that the addition of white Gaussian noise up to an input SNR of 10

I dB (as defined in the following simulations section) does not change the basic characteristics of

the KiSS objective function but does make the "plateau" rougher. It also perturbs the location

of the global minimum.

I
I
3 KISS objective function

4
alphal SNR =10 dBi -2

I alpha2

/

I
Figure 4.2 KiSS Objective Function at 10 dB SNR.I
KiSS implementation issues. An issue involved in efficiently implementing the

I KiSS algorithm is inversion of the matrix

G = (A A). (4.37)

i Kumaresan. Scharf and Shaw [KSS86] presented an efficient algorithm for this inversion based

on properties of eirculant matrices. While their algorithm is often a good idea, it has some lim-

I
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itations. Before discussing those limitations we present the inversion algorithm here, correcting

some errors in [KSS86]. First note that G is a banded MA Toeplitz matrix

go gi "'" gm 0 "" 0
gi go "

.0
G- g; '." gm '(4.38)

0 *

L 0 ... 0 g, ... g go

with elements -- i) " for - m
2k= 0  akak+j-i fo -<- --<

gj = g!_ for -m < j-i < 0 (.9

0 for j-iI>m

If n is at least as large as 3m we can define

Im Onxm

On-3mxm On-3mxm3 0 g1 eCc- 'm2m , (4.40)

and 
g

V = UJ2m. (4.41)

Then we can make G into a circulant matrix C by adding to it the product UVH:

go g1 g. 0 0 g ...

gg go

0

C =G+UVH~ 0 (4.42)

0

0 " m

grwl"."

3 9r " gn 0 . 0 j ' g' go

A circulant matrix is computationally easy to invert using the discrete Fourier transform
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(Dav79]. Let ci be the sequence defined by the first row of C, indexed from i = 0 to i = n- m- 1.

I Let Al be the coefficients of the inverse discrete Fourier transform of the sequence ci. Because

3 of the symmetry of ci we can use the discrete cosine transform:

A n= e S ril for0<1< n-m-1. (4.43)

i=0

To compute the first row of C- 1 (again indexed from zero) we take the forward discrete Fourier

3transform of the sequence defined by the reciprocals of Al:

A- 'e - -k for 0< k<n-m-1. (4.44)

n - 1n =0 n-rn

The rest of C- I is obtained by circular shifts of the first row to create a circulant matrix. Once

C- ' has been computed, we can use the Woodbury identity [GVL89] to obtain G - 1 with only

an inverse of size 2m:

G - ' = (C -UVH) - 1 = C- 1 +C-U(I2m - VHC-IU)-lVHC-l (4.45)

The first question about the circulant matrix technique for inverting G is when it is

more efficient than general inversion algorithms. General matrix inversion techniques require

order (n - rn)' operations, while the circulant technique reduces it to order (n - m) ln(n - in)

(assuming an FFT algorithm) for inverting C. plus order (2m)3 for the smaller inverse. If n

3is large with respect to rn, this is an improvement in efficiency. Preliminary tests conducted

with NIATLABTM suggest that the circulant technique pays off approximately when n > 6m.

Inversion of G could instead be accomplished by a variation of the Levinson algorithm, taking

advantage of the Toeplitz structure to invert G in order (n - m) 2 operations. Hence. the

3circulant technique is likely to be the most efficient in even fewer cases.

The other limitation of the circulant technique is that the circulant matrix C may be

i singular, even when G is nonsingular. In this case the algorithm fails. This problem is made

3 worse by the fact that certain conditions guarantee singularity of C. These conditions are that

a be real and symmetric (as for real undamped sinusoids), and both m and n be odd. The

I
I
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proof is to construct C for this case and show that

Cx = (4.46)I
when _ is given by

X (4.47)

To prove Equation 4.46, first write the elements of C as linear combinations of the products

3 iaj, where a_ is the parameter vector corresponding to the constraints of of Equation 4.28.

A given row of Equation 4.46 can be demonstrated true by collecting coefficients of aiaj into

a matrix indexed by i and j. We have not included the details of the proof, as they are not

instructive.

I While singularity of C remains a real danger, the impact of the guaranteed singularity

case is less than it first seems. Real symmetry of a occurs by constraint when we are modeling

real sinusoids, but in this case m is unlikely to be odd since each real sinusoid is rank 2. Hence.

3it is less likely that the conditions for guaranteed singularity will all be met simultaneously.

4.2 A Newton Method for Complex Exponential Subspace ID

The KiSS algorithm was originally presented with a "phase 2" in which the iteration

3 ~Was modified to drive the gradient to zero in order to locate the minimum of the objective

function exactly. Phase 2 was first described in [EvF73] for real data and without constraints.

3But [KSS86], while they state that they used phase 2, do not tell how phase 2 was extended

to complex data with constraints. Bresler and Macovski [BrM86] simply dropped phase 2,

3 claiming (perhaps rightfully) that it did not contribute significantly to performance.

A Newton method makes a good alternative to the phase 2 of Evans and Fishl because

of its quadratic convergence behavior. Starer and Nehorai [StN88] derived expressions for the

3 gradient and Hessian of the constrained KiSS objective function of Equation 4.32 for the case

of real data and parameters. In the following we generalize their work by deriving similar

I
U
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expressions for the case of complex data and parameters. For implementation of the Newton

method, we use and recommend the modifications described by Dennis and Schnabel [DeS83]

to improve convergence from poor starting points.

The following derivations of the gradient and Hessian of L(2.) are rather involved,

although the end results are pleasingly simple. The basic methods we have followed are those

of Magnus and Neudecker in (MaN88]. Their formulas are intended to apply to real matrices,

but many can be generalized to complex matrices. The derivatives we seek are of real valued

likelihood L(a) with respect to real valued parameters at, so that only the intermediate results

are complex valued. We use the notation

XT Transpose of a matrix,

X Complex conjugate,

X: Complex conjugate (Hermitian) transpose,

X #  Moore-Penrose inverse, = (XHX)-IXH, (4.48)

X O Y: Kronecker product of matrices,

vec(X) Vectorization of a matrix,

dX: Differential of a matrix.

We also use three types of permutation matrices: the reverse permutation matrix J, defined in

Equation 4.17, the circular down shift matrix Zn defined as

Zn = [a- 1 ,-i (4.49)

and the commutation matrix Km,n defined to satisfy

SKmn vec(A) = vec(AT), for A E Crnxn (4.50)

We have found the following identities from Magnus and Neudecker especially useful.

IThey are given with their original equation numbers at left.

3 2.2.4 (A : B)(C D) = AC 3 BD, if AC and BD exist. i4.51

I
U
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2.4.5 vec(ABC) = (CT 0 A) vec B, (4.52)

3.7.4 Kp,,(A® B) = (B® A)Kq,., for A E Cm n
, BE (pxq,  (4.53)

3 9.13.17 d(X - 1) = -X-l(dX)X - 1. (4.54)

Magnus and Neudecker's identification theorems for first and second derivatives are also quite

3 valuable.

Gradient. Begin by letting q be the number of elementp' in a, and let p = n - m be

3the dimension of the perp-space (A):

_ E R q  and A E Cn×p. (4.55)

We may find an expression for d vec(A), by first noting that

!a = (TL+ c) = T*c + (4.56)

Then we can express the mapping from a (and a) to A as

vec(A) = J??+, -n ' -+l +["L Jzx+ [ m p Ix~ -- ilxm+lJO-1 XrZ - 1 r -I X_

1 Z(4.57)

etThe differential is

d vec(A)= F: [jm+i 1] T-da. (4.58)

d vec(AHA) = vec d(AHA) = vec[Amd(A) + d(AH)A] (4.59)

= vec(A~dA) + KP,.t vec(A HdA)", (.9

where KPT is a commutation matrix [MaN88]. We may apply Equation 4.52. and use the result

of Equation 4.58 to obtain

dvec(AHA) =(Ip A )H vec(dA) + Kp.,(Ip AT) vec(dA)"

'(p H -z x j1 I -d
-Z P- 1 XM.

n Z(4.60)

Kp p(I,, -t A T )  [0, J,-', Td,.

IZ-

I
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Next, we need the differential of yH(AHA)- 1 Y. We use Equations 4.54 and 4.52 toI obtain

d(YH(AHA)-Y) = yH(AHA)-ld(AHA)(AH A)-tY

vec d[YH(AHA)-Y] = - (yT[(AHA)-l]" ( yH(AHA)-') vecd(AHA).

3 Substituting Equation 4.60 into Equation 4.61 and applying Equations 4.53 and 4.51 gives

[ In 13vecd[YH(AHA)1 'Y]= (y[AA-](yHA#) Z M1 T

vP- 1

(4 62)

3Km+im+i (yH(AHA)-l (& yT(A#)*) [Zn Jin7+ ]T} dg..Z Ilop-lxrn+l

3 Finally, the differential of L(_) can be written down using the product rule

dL(g) = d(aHyH(AH A)-lYa)

= d(a)HyH (AHA)-yYa + gyH (AH A)-lYd(a) + gHd[yH(AHA)-Y]. (463)

3 The first two terms are complex conjugates, so they may be combined as twice the real part

of one of them. Also each term in this equation is a scalar, so we can vectorize the third term

m without changing anything. This allows us to apply Equation 4.52 and put the third term in a

form where we can substitute our result from Equation 4.62, Noting also that da = Tda we

m obtain

dL(_) 2 Re(aHyH(AHA)-tyT]da -

(ZT
- 1  (4.64)

Km+im+i (YH(AHA)- 1 3YT(A#Y)) z n JT d.Z i1 tP-1 +

Since da is entirely factored out to the right of this expression. we can identify the derivative

of L with respect to i as the row vector that remains when dc is dropped from Equation 4-64

3 (later we will switch to the gradient, which is the transpose of the derivative). In the next

sequence of steps. ,ve simplify the expression for the derivative. Applying Equations 4.51 and

I
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4.53 gives us this expression for the derivative:

DL(a) = 2 Re[HyH(AHA)-YT) -

I[ A 1 -1ir J TM_ 1
L0p-lxm+ Tz'1 (4.65)

n

Now let u denote the following function of the measurement U:

u = (AHA)-Ya = A#. E Cp. (4.66)

This definition of u is obviously convenient for simplifying the derivative expression, but it

also has a physical interpretation. It contains just the information necessary to reproduce the

residual, defined as the projection of the data U onto the orthogonal complement of the signal

subspace:

= PAU- (4.67)

If the sequence u is presented at the input of an MA filter with coefficients a then the output

is the residual sequence:

Ia * t= Au=- PAU : . (4.68)

Here * means convolution. Since u is a minimum dimensional coding of the residual, it corre-

sponds to the syndrome in coding theory (see [SMB87]).

Proceeding with the simplification of Equation 4.65 we note that again two terms are

complex conjugates and -an be combined. Thus

DoyL(I) = 2Re uHYT_ (uH & JAT) z] [Opi7;2+l T} (4.69)

The last remaining Kronecker product can be written out and simplified:

3 ~(u ar~TAT) T T ... u;TA" F
= " [~AT u A Upun -  Lzpi-! (4.70)

3=(LuTATInU +L1TATZUZ1+- +u1". .1L

= (LTAr(I, AT + Z' u + ... Up)=I~(,u+~ : .. Z-u)

I
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3 So the expression for the derivative becomes

DcL(!) = 2 Re UHYT - UTAT (I,, u + Z -; + + ZP+ -u;) [ 0 JM+ T

Now define the Toeplitz syndrome matrix U from the elements ui of the syndrome in

3 the same manner as A is defined from a,:

u0
u " .

L0 u

3 This syndrome matrix satisfies the identity

5 (I,*u + ZU; +. + z-1u;) [ 0n+l J U, (4.73)

allowing further simplification of the derivative:

DOL() = 2 Re {UHYT - uTATjUT}. (4.74)

I It can be shown that

3 uTATjUi = HJpATUJn+, (4.75)

3 so the derivative can be written

DcL() = 2 Re {_UHYT - UHJpATuJmn+IT}

(4.76)

S2 Re {uH(Y - JpATUjm.,)T}

The gradient is the transpose of the derivative (under the real-part operator we can take the

I Hermitian transpose):

S() = L()= 2 Re {TH(Yff Jm,+IUTA'Jp )} (4.77)

3 This expression is a generalization of that of Starer and Nehorai StN5h The gener-

alization is from real data and parameters to complex data and parameters. The r~al :ase of

I
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our result agrees with their result, taking into account that we have made a slightly different

definition of U. But we will now proceed to derive a more elegant expression for the gradient,

taking advantage of some fascinating identities.

First note that JPA'TU*Jm+ is a Toeplitz matrix of the same form as Y. In fact, its

elements are the residuals 2 defined in Equation 4.67! That is, the residual matrix

= JPA TUJ,j,,+ (4.78)

is built from the elements 2 in exactly the same way as Y is built from U in Equation 4.14.

Corresponding to 2 = U - _j, let us define an estimated signal matrix

R = Y - N. (4.79)

Now the expression for the gradient becomesIy __;HU/(_) = VaL(A) = 2 Re{TH(YH -N _(4.80)

= 2Re{TH HU}.

So the gradient is the convolution of the signal estimate 2 with the syndrome t, transformed by

the constraint matrix TH. This filtering interpretation is shown in Figure 4.3. At a maximum

of L(!I) the gradient is zero. For the gradient to be zero requires orthogonality between the

signal estimate and the syndrome. This orthogonality can be enforced in the time domain or

in the frequency domain, using the DTFT. This is another occurrence of the "orthogonality

principle" that the error is orthogonal to the signal estimate in least squares problems.

Hessian. To implement a Newton algorithm for minimizing L(2) we also need the

second derivative matrix, the Hessian. Our final expression for the gradient implies that the

first differential is

dL(..) = darT2 ReTHXHU}. (4.S1)

Thus the second differential is

d2 L() = d&2 Re{THX du + Td(X).H,_
(4.32

= dJT2 Re{THX .u 4- r _i T" )K i,- : vec 4( X)"

5
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I

I

signal gradient

estimate
. subspace 
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filter filter

I

3 Figure 4.3 Filtering Interpretation of the KiSS Gradient.

3 So the challenges are to find the differentials of the syndrome and the estimated signal matrix.

Beginning with the syndrome we haveI
u=(AH A)- Ya,

so the differential of the syndrome is

d. = (AHA)-IYTda - d[(AHA)' - "Y

3 = (AHA)-'YTd( - A' 1 A j(A" A (AtA 3-Y,,

-=IAIAA)_YTdr -  , T : A:IA):) vec ,l( AiRA ).

We an simplify this to a fairly nice expression . y substitwt irg tor v' (" ,j( A !'rom ,! iation

I
3
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4.60, applying Equations 4.51 through 4.53, and using the fact that Klp = Ip:

cI = (AHA)-'YTda - (I. T ® (AH'A)-1 ) (Ip AH) vec(dA) -

I (uT ® (AHA)-
1 ) Kp,p (Ip , AT) vec(dA)

= (AHA)-lYTdg. - (_LT 0 A # ) vec(dA) - Kl,p ((AHA) - 1 ® uT ) (Ip 0 AT) vec(dA)

_ 

[in i.
=(AHA)-lYTda - [u,A* u2A# ... upA#] Ln jl 1+ ] Tda -Z

- 1  
Iop-lxrn+l I -

I ((AK A) - ' ® UTAT) vec(dA)

= (AHA)-YTd - A# (uIi + U2Z" + .Z, + upZP - ) [OP-xm+ljda

((AHA)- ') vec(dA)

= (AHA) - YTd, - A#JU°T'd" - vec (PT(dA_)[(A A)- T)

=(AHA)-lYTdg_- (AHA)-lNJm+Tdc - (AHA)-'(dAH)p,1 (4.84)

where N, introduced in the last line, is a Toeplitz matrix of backward residuals

IL = J,A*Jpu, (4.85)

3 analogous to iR for forward residuals i. The third term in Equation 4.84 for du may be simplified

fu:ther by the fact that

3 (dAH)_ = :Nda. (4.86)

This identity is analogous to the commutativity of convolution. and to the switch already used

I between AH ! and Ya. Equation 4.84 then simplifies to

Sdu = (AHA)-'YTda- (A"A)-'NJm+iT'da - (AHA)-N;Tdq

= (AHA)- 1 (YT - NJm+,T- - N-T) d (4.S7)

S= (AHA)-1 (T - NJm+T-) da.

This is the differential of the syndrome. Now wp -an eXpress the vectorization ofthe

3 signal estmate matrix as

3 =[ i~ ~ I .]I,

I
3

L P, n
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Since -2 - Ag, we have

vec di = - . Ipl j- (dA)u- + Adu

0 pxrm I JZ I ]
[Opxm I I-

[;~o; :;iz n] [(.UT 2)In) vec(dA) + Ad~ *#~TNmi.}f

_ px Ip 1z;

f Opxm IPI 1n
lopxm 

-p Nz- Jm+ 1 T] d+AH.

d 2 Ln) )0 dJ2 ReT~kH(TH-S[kTn- im*]Tda

I n

Op ~L 2~ X,- IjzznmI

(4.9)3 The effec~~~~bt it peutipicahion bysult m i st Euton48 r eor dh rs o h urile ar

IZ-
I"K ,, j O r p n J U -A LR T ' , ,T o
I ' 1 Z'-

4.0
ThIfe- fp e utpiainb p n storod rt er~so h utile arx
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The result in this case can be expressed as

d2 L(_) =dT 2ReTHk (A HA)-[RT - &J, +IT'] -u uTH uTH ... uPTH].

[Om+1X 1 Jm+i Om+1xp-.2] J + UT+A#T[RT. - -qJ , T],N

[OM+1Xp- i Jm+I ]

dxT 2 Re{THH (AHA)-[: T - INJm+IT'] -

THUHJ, (JnUT + A°[(AHA)-]°[X°T' - F*Jm+,T]) }da
HX ̂H ^R - TH"(H)'NJ+T

= do 2 Re THx (AHA)-IT - T X (AHA)-NJm+ 1 T -

THUHUT - THJm+L, T[(AHA)-I] " XT' + THJm+,N [(AHA)-]*N Jm+,T d_.

(4.91)

Because of the real-part operator, we can take the conjugate of thQ last two terms and then

factor the expression as

dL(gJ = - 2Re{[THXH T~mlH (AA.jT~~ THU UTd,.

(4.92)

Let S denote the matrix

S = A(AHA ) - [XT- NJm+iT1 . (4.93)

Then the final expression for the second differential is

d 2L(_) = aT 2 Re {S11 S - THUHuT} Td (4.94)

The second identification theorem" of Magnus and Neudecker allows us to identify !e IIssian

3 from Equation 4.94 as

HiT) = 7 ,io = "' 2 Re "S"S - T'TTI'T(

3 Flie filtering i terpretation of Te li ,,ssan s ,iiown ! F ir, 1 i m i a J -x"' S

',,- uiv.r,, filter A 'o ' ,. -;n.1ro, I> _x r:,, . rvr : iIvdn aI
I
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filtered by the MA filter A to produce the forward and backward resicuals P and ntwiddle.

The constraint T is applied to the data U and to the residuals P and _ , and the resuduals are

subtracted from the data. The difference vector used to form a Toeplitz matrix and filtered

again by the inverse filter A# to create the matrix S. In the other branch of the figure, the

3 syndrome u is used to form the Toeplitz matrix U to which the constraint T is applied. The

Hessian is then formed by summing the Grammians of S and UT.

I

A 7I +
II

I mati forward filter csyndrome ;1

inverse J A* J T 3

filter m a"
matrix II  backward filter constraint

HessianH

Figure 4.4 Filtering Interpretation of the KiSS Hessian.I
3 Newton step. We -an now implement a Newton method for The minim,.ation of

[..t ) F-r -nv .iirr-nt iter'tion. ,. thLe , Nowton !,rop ,s to ,iihtai tie l ,I r the iles.i- nI
I
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times the gradient: - H() -2 ( ). (4.96)

Performance of KiSS and Newton. We have run simulations to test the perfor-

mance of the KiSS algorithm with and without a Newton method as a second phase. We have

3 used the same test signal for these tests as used in [KSS86] and others. The signal is n = 25

samples of

s x(t) = e",i + e 4ej 
,  (4.97)

I withIai 
= 2-r(O.52),

(4.9S)

I = 2-r(O.50).

Noise of variance a
2 is added to each of the real and imaginary parts. The signal to noise ratio

(SNR) is defined as

SNR = 10log 10(-). (4.99)

U At each of several signal to noise ratios, we ran 500 trials. For each trial the KiSS

algorithm (phase 1) was run on the data with a new realization of the noise. The Newton-based

phase 2 was started from where KiSS terminated. The results of the KiSS algorithm alone were

3 compared with the results after phase 2. Figure 4.5 shows the performcnce as -10 log*(MSE)

versus SNR. You can see that the Newton method is of limited value when :1 follows convergence

3 of KiSS, improving performance above the threshold SNR cf 9 dB only slightly a,:d actually

degrading the already bad performance below the threshold SNR. The Newton method may be

more useful if used after fewer iterations of KiSS. or from some other starting point.

3 4.3 KiSS with Structured Noise

%Ve now cnsi.-er the problem of estimating structurally ' nistrair d, ;iaZnai s bspaces

in he presence of structured noise. \W- extend the KiSS algorithm ro -towinr !,:,r

3 noise with a known subspace of dimension t. If the srli~tlire noise sHs n,-., kcn.,wn.

it :.rresponis , impulse noise. -hen .v, '.-n p-rforn i ar~ h . r i 7,, I.. -- "i

I
I
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75

70 X KiSS (phase 1)

65 k + Newton (phase 2)

60h CR Bound

01 55k

S 45-

40H

35~*-

30)-

205 10 15 2'0 25 30

S NR

Figure 4.5 Performance of KiSS with and without a Newton phase 2.

noise subspaces, performing the extended KiSS algorithm for each one and choosing the one

that minimizes the objective function. This outer optimizzction search corresponds exactly to

the one described in Sect.on 3.4 for the same problem without the complex exponential signal

model. As in the earlier problem. we nee d to include an order pena!ty in the objective function

if the rank t is unknown.

Signal model. Let the signal be a sum of complex - xponentials as in Section 4.1:

Mn

X M Z" (4.100)

Suppose rhe observed lata -onsists of signal xtt). plus si,uctured noise b(t), pl)us bactkround

noisp vit for n ronsecutive lime ;ndices:

'pIt = ri it i' )1 t 12. . '4 W
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The matrix-vector formulation is

I S_+S _,(4.102)

where the signal is x = HO with

1= [ ]C ,  H=[ J E Cn_= i ECm (4 1n1)
L ('n ) L : 00

1

The structured noise is b = S~b with

I= " E C', S E Cn xt, = E C .  (4.104)Lb(*) 6M

The background noise is k E C' .

Objective function. Given that the background noise is zero-mean white Gaussian

noise we could derive the log-likelihood function and maximize it to obtain the ML signal

subspace estimate. But this time we will take the equivalent least squares approach. The

modeling error is the difference between the observed data and the two part model (signal plus

structured noise):

(4. 1C

3 The least squares objective function is

e = eHe. (4.106)

The last form of Equation 4.105 leads to the following form of the objective function when

optimum values of j and 2 have been chosen (more detail is given in the chapter on parameter

I es imation):

=2 "- (I - PHS)L, 4.107)

3 where

P = H S ('H S H', H S] 4. 1

Derivation of a KiSS type algorithm..\ p :n h, ri e',Itvin if iP' Ni SS

I
I
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algorithm was the switch from H to the Toeplitz matrix A spanning the orthogonal complement

of the signal subspace. By rewriting the objective function of Equation 4.107 we will eventually

be able to make the same switch.

e2 = UHU- j' [H S] ([H S]H [H S]) [H s]H

5 " [ aHHHs] H HHS ]-' [H " ] (4.109)

The inverse can be found by the block matrix inversion formula [Kai8O]:

HHH HHSISHH SH¢S ]SH (410

[(HHI)_ +H#S [SHS-SHPHS] SH(H#)H _H#S _SHS _ SHPHS] 1 (4.110)

- [SHS - SHPHS]-_ SH(H#)H [SHS _ SHPHS]-

so

e = LH-U , _ HpL _ UiPS [SH(I - PH)S]-I SHpHIL + IL PHS [SM(I - PH)S] 'SH +

jes [SH(I - PH)S]-' SHPHU. - IIHS [SH(I - P.)S] -1
(4.111)

3 Now make the switch by replacing all occurrences of PH with I - PA"

e2 = it HU- UH(I _ PA)V- H (I- PA)S [SHpAS]-1 SH(I_ PA)!L +

I UH(I - PA)S [ SHPAs]' SH + UHS [SHPAS] SH(I - PA)U - UHS [SHPAS]' sH

= H PAU - 2PAS [S"PAS] - IS H PA(1

(4.112)

Then make the substitution PA = A(AHA) - AX and factor as

e2 :- IHA [(AHA)_l - (AHA)_1AHS [SHPAS] ' SHA(AHA)_I Aif. (4.113)

U Finally, taking advantage of the identity AHl = Ya we can write the objective function

as = a hyH (AHA) - 1 - (A 1HA)-'AS (SHPAS) S_' fA(AA)- Y. (4.114)

IThe form of Equation 4.114 is sirmlar to the form of the KiSS objective function

in Equation 4.15. The difference is the -correction term" subtracted from (A1 A) - - which

accounts for the structured noise poluon of the modl The new IbiertivP function is. in fact..

I
1
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invariant to all structured noise in the subspace (S).

We assume that S is fixed (either known or selected as a candidate in an outer opti-

mization) and try to minimize Equation 4.114 with respect to a. We propose an algorithm to

minimize e2 that corresponds to the KiSS algorithm: Hold the expression in square brackets in

5Equation 4.114 fixed at each iteration and solve the resulting quadratic minimization problem

for the new a, then use that value of _ to update the expression in square brackets for the

3 next iteration. Before the first iteration the expression in square brackets is set to I - Ps.

Constraints on a may be handled in the same way as for the KiSS algorithm.

UThe KiSS algorithm with structured noise. With the affine constraint of Equa-

5 tion 4.16, the objective function of Equation 4.114 becomes

e 2 = (cH T TH)Y H [(AHA)-1 - (AHA)_iAHS (SHPAS) -i SHA(AHA)_tI Y(Tce + c)

a (4.115)

The only difference from the KiSS algorithm without structured noise is the matrix Qi that we

Ifix for each iteration:

Q. = yH [(AHA)-I - (AHA)-IAHS (SHPAS)ISHA(AHA)-'I Y. (4.116)

pThe explicit steps of the constrained KiSS algorithm with structured noise are

1. Build appropriate Y, T, c.

12. S Q = YH(I- Ps)Y.

3. Repeat until convergence:

3a. Let. c = -[Re(THQT)] - i Re(THQc).

3b. Let a = To + c.

3c. Build A from a.

3d. Let Q = yH (AHA)= - (AHA)- AHS(SHpAS) - 
sHAIAHA=I y.

4. Stop.

5 Co nverrence is ,ested in tie same way as the original I\iSS algorithm.

Example: Second order KiSS ojective function with structured noise. ToI
I
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illustrate the difference between the original KiSS objective function and this one which accounts

for structured noise, we return to the second order example of Figure 4.1 and Figure 4.2. When

substantial structured noise is added to the signal, the surface is greatly distorted as shown in

Figure 4.6. However, when the modified KiSS objective function is used, accounting for the

structured noise, the surface returns to its original characteristic shape as shown in Figure 4.7.

4
alphal -h SNR =10 dB

-24

Figure 4.6 KiSS objective function corrupted by structured noise.

3 Simulation Results.

Simulations of the KiSS algorithm modified for structured noise have not been ex-

I tensive because of the high computational cost invAved. Enough simulations have been run.

3however, to make the following observations. The algorithm converged in all the trials .ver

30.J00) whether the structured noise matrx was -orrect. or not When ,ivon Th, -,orr,,,,t 4truc-

I
I
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alpha1 SNR -- 10 dB

I

3 alpha2

I 7

I

Figure 4.7 KiSS objective function with structured noise accounted for.

Itured noise matrix, the frequency estimation performance (measured by mean squared error

i in f1 or f2) of the algorithm was essentially the same as the regular KiSS algorithm in the

absence of structured noise. In contrast, the use of the regular KiSS algorithm when structured

3noise was present resulted in very poor estimator performance, as one would expect considering

Figure 4.6.

3 The main set of tests was conducted as follows. The test signal was the same as the one

we used for the KiSS algorithm, with 25 samples of two complex exponentials. The background

Inoise was added in the same way as for the regular KiSS tests, and the SNR computed the

5 same way. We added a fixed structured noise vector to the signal and background noise, with

impulses in positions 2 and 23 whose values were -. 5-7j and 4-3j respectively. Leaving out the

I
I
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order selection aspect of the problem, we assumed knowledge of t = 2 impulses and conducted a

combinatorial search over the (225) possible locations for the pair of impulses. For each candidate

S we applied the structured noise version of the KiSS algorithm until it converged. We then

chose as our estimate of S the candidate for which the smallest value of the objective function

had been obtained, and took the corresponding estimate of the AR parameters a.

To be blunt, this method of identifying the structured noise subspace did not work.

The correct subspace was chosen zero times out of 50 background noise realizations at 20

dB SNR, and zero times out of 50 even with very clean data at 50 dB SNR. The frequency

estimation performance was also very bad, since the structured noise was not successfully

removed from the data. We believe the algorithm was coded correctly, although a program bug

is not impossible as the explanation. Otir conclusion is therefore that this is not a good way to

identify the structured noise subspace. We observe that a better way to identify the structured

noise subspace might be found by comparing Figures 4.6 and 4.7. From these figures it appears

that the error surface is "smoother" when the structured noise has been correctly accounted

for. If this observation could be quantified it might lead to a better identification technique

for simultaneously identifying complex exponentials and impulse noise. We leave this idea as a

suggested extension of this work.

a
I



CHAPTER V

Order Selection for Subspace Identification

In this chapter we consider the problem of selecting the appropriate dimensionality of

a subspace. We consider two kinds of subspace order selection problems. In the first, there is a

known prior subspace model, but it may be beneficial to reduce the rank of that model because

of the presence of noise. This is a typical rank reduction problem, where we trade off mode!

bias and variance to minimize mean squared error. In the other order selection problem. we

have no known prior subspace model. Instead we are trying to identify the subspace from the

data as in Chapters III and IV. It is not clear that the bias versus variance tradeoff applies.

since we have no model against which to measure bias.

5.1 Rank Reduction of a Prior Signal Subspace Model

The purpose of rank reduction is to reduce the Mean Squared Error (MSE) of an

estimator. We measure the error in the observation space, noting that it could also be measured

in the parameter space. Since the actual Squared Error (SE) is unknown, one class of order

selection rules involves making an estimate of the SE at each rank, and choosing the rank for

which this estimate is smallest. The order selection rule of [ScS86] is of this type, as is our new

approach. Other methods of order selection in similar situations are given in [Aka74], [SMB87],

[Mar87], [Kum85].

We begin with the linear statistical model of complex data !,

nn < n Mrn

I

I
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In this equation, H is a known system matrix which spans the m-dimensional signal subspace

(m < n), I is the parameter vector and z = HO is the signal. The additiv, iaoie, 1/, is zero

mean, white, and Gaussian, with indeendent real and imaginary parts:
1.,

R e (L ) N ( 0, 1 cr( 
.2

2 (5.2)

Im(_) N(0, I.1 '2
At the receiver both the signal x and the parameter _ are unknown, and a signal

estimate is desired. The maximum likelihood estimate of x is the least squares solution obtained

by projecting IL onto the signal subspace. We shall denote this signal estimate by x since it

lies in the m-dimensional signal subspace:

X' = PHij, (5.3)

where

PH = H(HHH) - 1
HH. (5.4)

The estimator x is unbiased, and has variance m "2 . A reduced rank estimator is

formed when we replace PH in Equation 5.3 with a lower rank projection P, (r < m), whose

range is contained in the range of PH:

:K, = P.5.5)

Using P, reduces the variance of the estimate from m "2 to ro 2, but introduces bias 6_ given

3 by

br = (I-P)4_=(PH-P). 
(5.6)

Figure 5.1 shows how the error can be decomposed into two orthogonal components. one due

to noise variance and the other due to the bias introduced by rank reducticn Because of

orthogonality, the squared error can be estimated as the sum of the variance and 'he squared

magnitude of the bias. Since the variance is known, we need an -stimate of the squared

magnitude of the bias. b2 = b$'b,. In the following pages we review ;everal ,'stimators of C' and

introduce a new estimator based on two sequential applications ,f 'he principle of maxrnum

likelihood.

I



83

DUETO I
iBIAS IP

BIAS03E 
R R R 

_U 

ToDUETC _ _ _

VARIANCE

r P

Figure 5.1 Orthogonal decomposition of error.3 Once we have estimated the squared bia~s, we choose the rank for which our estimate

of the squared bias plus the variance is minimum. But there is more to choosing the low rank

5 projection P, than the choice of rank. We must also choose the orientation of the subspac-.

For this we return to the model matrix, H, and apply the singular value decomposition. The

left sin;'ilar vectors of :1 orthogonally span the signal subspace, and a suhset of the singular

vectors is chosen to form the range of '. The subset may be chosen by taking the singular

vectors corresponding to the largest singular values, or by a data dependent method such as that

suggested in 'KTS84], and rSchOll. In most of our simujations ve have used a di~a dependent

selection method.

I Estimators of Squared Bias. We now consider how he squared bias may bc

estimated from the data for a given low rank projection P. Reca!l h!nt ie squared !ia is

defined as

A2  i6 " b_ _ _I - P. ,. = P' p1  _ p . .r

I
I
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The maximum likelihood estimator for the bias vector itself is easily shown to be

-b = (PH - P,)U. (5.8)

The principle of invariance of maximum likelihood estimators [Sch9l] implies that the maximum

likelihood estimator of squared bias is

-H-

(5.9)
- UH(pI- -P,)U

We shall call this estimator #1, and the order selection rule based on this estimator, rule #1.

But our earlier comments have called into question the blind application of ML, espe-

cially when the invariance principle is involved. Scharf and Storey [ScS86] observed that this

ML estimator of squared bias is itself a biased estimator, with bias equal to (m - r) -2. This

is true in spite of the fact that b. is an unbiased estimator of b,. They proposed an unbiased

estimator of the squared bias, obtained by subtracting the known bias from the maximum

likelihood estimator of Equation 5.9.

= br b - (m - r)o--
(5.10)

-L g(PHl - Pr)U- (m - r)a "2 .

We shall call this estimator #2.

While unbiased, estimator #2 is not without disadvantage. It can give negative esti-

mates of squared bias, which are clearly unrealistic. We propose as estimator #3 a modification

of estimator #2 such that an estimate of zero is returned in place of any negative values.

b#3 = max(b.#2 . 0). (5.11)

Of course, we have destroyed the unbiasedness in the modification. For a given rank. each of the

estimators of bias squared may be plotted as a function of the maximum likelihood estimator

as shown in Figure 5.2 for (in - r) = 5.
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Estimators of Squared Bias

5 degrees of freedom

10- #1#

#4

#2,#3

Oi -

#2

0 2 4 6 8 10 12 14 16 18 20

ML estimator

Figure 5.2 Four estimators of squared bias.

In the remainder of this section we develop our primary result, a new estimator of

squared bias which will be called estimator #4. Consider the normalized maximum likelihood

estimator of squared bias:

2 &;,#1X = _;#--- (5.12)

The distribution of x2 is noncentral chi-squared with m-r degrees of freedom and noncentrality

parameter A = 7Tb,. Thus, the estimation of b2 may be posed as the fundamental problem

of estimating the noncentrality parameter in a noncentral chi-squared distribution with known

degrees of freedom, based on a single observation. A similar estimation problem was considered

by Meyer [Mey67], but with only two degrees of freedom and with multiple observations.

We obtain the maximum likelihood estimator b? for our case by" maximizing the like-



86

lihood function:

2,#4 = argQmax x2-,(z;A). (5.13)

In this Equation, X2,,(x 2 ; A) is the noncentral chi-squared density function of X2 with m-r = d

degrees of freedom and noncentrality parameter A. It is given in [Lan69] as

X- 2 -l(x2+A)(X2)1 (d- 2) 00 S1 f

Sj (5.14)
2 " )r(j0 !1l(d+2k)

k=O

Setting the derivative of Equation 5.14 with respect to A equal to zero, we obtain the

maximum likelihood equation

2. 2- A ,)j e a e 2( x )j '
2!r(4) +(d+2k) 2() rlj (d+2k)

k=O k=0
(5.15)

For x2 - 0 we may multiply Equation 5.15 through by

e- e

and simplify to

-2 + - JJ - = . (5,16)
j=1 j!f (d+ 2k)

k=0

The result is a power series in A, and may be approximately solved by any of several numerical

approaches. The power series may be made more explicit by rewriting Equation .5.16 as

00

ZajAi = 0, (5.17)
j=0

where

j! 1(d + 2k)
k=0

If Equation 5.17 has a root for positive real A, that root is the NIL estimator of the

noncentrality parameter. If the largest real root is negative, the ML estimator of noncentrality

is zero. since the maximization of Equation 3.13 is restricted to positive A.
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There are some theoretical curiosities about the new estimator of squared bias (#4).

It was obtained by two sequential applications of the principle of maximum likelihood. First,

through invariance, estimator #1 was found to be the ML estimator of squared bias. Then this

first estimator was considered as a statistic and its distribution was known to be chi-squared

with noncentrality parameter equal to the squared bias. So ML was applied again, based on

the chi-squared statistic. to nbt.-tin our new estimatui. One can envision tnis process oeing

extended to further iterations of the ML principle, although the complexity of the likelihood

functions increases rapidly, so that even one more iteration appears intractable.

Also of interest is the fact that the first NIL estimator of squared bias is not a sufficient

statistic for squared bias, as can be seen by application of the Fisher-Neyman factorization

theorem [Sch9l]. This fact tends to undermine the credibility of the new estimator. Even so,

the simulations show that it outperforms the other three estimators at low signal-to-noise ratio.

At high signal-to-noise ratio all four estimators perform about the same, and high rank models

are generally preferred.

Simulations. We have performed simulations using NIATLABTM to test and com-

pare estimators #1 through #4 and the corresponding order selection rules on real-valued data.

Equation 5.17 is solved numerically by truncating the series and rooting the resulting polyno-

mial. The typical pattern of root locations from this process is shown in Figure 5.3, where we

are interested in the one positive real root. To save time during actual simulations, we precom-

pute the solutions to Equation 5.17 for a range of the statistic z 2 from .1 to 50 in increments

of .1, and for 1 to 10 degrees of freedom. The ML function is then evaluated by tahbe look up

with linear interpolation. For larger values of x
2, which occur at high signal-to-noise ratio, the

ML function is nearly linear, and we use a linear approximation.

We have run four sets of tests at 5 values of SNR for each set. In each set 200

realizations of the noise vector have been simulated at each SNR. In the first set the parameter

vector is also chosen randomly at each realization, while the parameter is fixed in the other

three sets of tests. All four bias estimators are applied to each realization and tne sample
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mean squared error of the resulting signal estimators is observed along with the order selection

behavior of each rule.

Order 20 polynomial roots.
40

30
xX

20

10
x

-10 'C

-20

-30

-40
-15 -10 -5 0 5 10 15 20 25

lambda - 22.96

Figure 5.3 Roots of truncated power series.

For the first set of tests, we let n = 10 and m = 6. For each signal-to-noise ratio we

fix a randomly generated system matrix H and run 200 trials. In each trial a new parameter _

and a new noise vector L' are generated according to

& .V(0, I),
(.5.19)

_l N N(0, ' 2).

The signal-to-noise ratio used is the expected per-sample SNR, calculated as

SNR = 101ogl( Tr( .H) 5.20)
nra

2
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The actual squared error (SE) for a typical realization at 0 dB is plottedt versus rank in Figure

5.4. Also shown are estimators #2 (labeled CM) and #4 (labeled IML). In the realization

shown, both rules selected rank 4 while the best choice was rank 6.

Figure 5.5 shows a plot versus SNR of the observed sample mean squared error (MSE)

between the true signal x and the low rank estimator _,. chosen by each of the proposed order

selection rules. The Oracle curve gives the sample MSE of a hypothetical order selection rule

that always makes the best choice to minimize the true error and thus representb "ic .e. :

possible performance. Success as an order selection rule is plotted versus SNR in Figure 5.6,

where the measure of success is the number of trials out of 200 where the rule made the right

choice of rank, in agreement with the oracle. The histogram in Figure 5.7 gives a more complete

characterization of the order selection behavior of rule #4 at 0 dB. For example, the bar above

1 indicates how often the rule overestimated the best rank by 1.

In the second set of tests, we have selected for H a 10 x 3 matrix representing three

sinusoids with relative radian frequencies i' , , and i'd-" The singular values of this system

matrix are approximately 2.9, 2.2 and 1.0. The parameter is fixed for all trials at 0 = [1 1 11T .

The results for this set of tests are given in Figures 5.6 and 5.9, where SNR is here defined as

z2
SNR = 0 log, 0(i-L). (5.21)

The third set of tests differ from the second only in the new choice of 9 = [0 1 1]T .

Thus for these tests the signal lies in a rank 2 subspace in terms of H, but not in terms of the

left singular vectors of H. Results for this test are given in Figures 5.10 and 5.11.

For the fourth set of tests the same system matrix is used as for the second and third

sets. This time the parameter vector has been chosen to result in a signal that is very nearly

rank 2 in terms of the left singular vectors of H, namely 0 = [0.3 1 1]T. Also different in this set

of tesL i the method used to choose the priority of the singular vectors. The first three tests

use the data dependent method described in [Sch91] of choosing the singular vectors whose

inner product with U is largest. indicating the strongest modes for each trial. In this test, the

singular values of H are used to determine the dominant singular vectors. Figures .5-12 rnd

.5.13 show the results for the fourth set of tests.
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Actual SE (solid), IML estimate (dotted), CM estimate (dashed)
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Figure .3.4 SE of a typical realization.
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Second Test Results
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SCcond Test Results
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Third Test Results
Order Selection
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Conclusions. As expected, relatively clean data is best modeled by the full rank

system matrix. The tests generally show that rank reduction becomes useful only for relatively

noisy data. On the other hand, if the data is too noisy the best choice of rank is always 0.

For the range of SNR over which rank reduction is useful, the new order selection rule (#4)

performs generally better than the others under the conditions of these tests.

The iterated ML approach to bias estimation leads to a nonlinear ontimization prob-

lem. As such it requires much greater computational effort than the linear bias estimator

suggested in [ScS86]. However, most of the extra computation can be done in advance and our

experiments suggest that the extra computational effor. -quired by the iterated ML estima-

tor does improve performance. The concept of iterating the principle of maximum likelihood

remains a curiosity.

I
I
I
I
I
I
I
I
I
I
I
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5.2 Order selection in Subspace Identification

We now consider the order selection problem of identifying the number of impulses

making up a structured noise subspace, assuming that the signal subspace (H) is known. In

previous work [SMB87] we have successfully applied the order selection rule of Scharf and Storey

[ScS86] to this problem. However, the derivation of that order selection rule is based on the

bias versus variance tradeoff that occurs in the rank reduction problem. It is not clear that it

should be applied to order selection for the subspace identification problem.

An alternative way to proceed is to use a Bayesian hypothesis test on t, the number

of impulses presumed to exist in the observed data vector:

Ho: t=0

HI: t=1

(5.22)

Hq t=q.

The maximum number of impulses we can successfully correct is q n - m where n is the size

of the data vector and m is the rank of the signal subspace.

The signal model and assumptions are as follows. The signal subspace H is known.

The data consists of signal plus structured noise plus white Gaussian background noise:

!L= H + So+ v.

The structured noise is impulsive in nature, corresponding to a structured noise matrix S whose

columns are an unknown subset of the columns of the identity matrix. The parameters _ and P

are unknown. We consider first the case where all variables are real valued, so the background

noise is distributed as

(5.23)

where we will consider both the case where o-2 is known and the case where it is not known.

To derive the Bayes test on t outlined earlier. we need to know the joint probability
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density function of the data L and the number of impulses t. This can be expressed as

fxt(,t) = fWst(tS, t)fst(S1t)ft(t). (5.24)

The conditional density of Uj given S and t is a joint normal inherited from the noise density:

fVse(ULS, t) = (2wr 2 ) - / 2 exp -C( - - - - SO) . (5.25)

To get suitable density functions for S and t let us assume that impulse errors affect

the data samples independently, and each sample is affected with probability p. This implies

that the number of impulses obeys a binomial distribution, while all combinations of t impulses

occur with the same probability. In this case the probability mass function for t is

ft(t) = (n) P,(1 _-p)n (5.26)

The conditional probability mass function for S given t is uniform:

silt(SIt) = (n) (5.27)

To implement the Bayes test for t we must choose t and the unknown parameters

S, 0,!p, and possibly o,2 to maximize the joint density of !L and t. This is of course equivalent

to minimizing the negative log of the joint density function, so we now write our objective as

mi,,, [-L(U - HO - S0)(u - - Ss.) + n ln(2ro2) - In (p'(1 - p)'-) (5.28)

Minimization of this objective with respect to 0 and ( may be accomplished by substituting

the ML estimates of these parameters as derived in Chapter VI. resulting in the objective:

min !T(I - PHs)! u+ n ln(2 ,r a2 ) - In (p'(1 - p)n t) . (5.29)

We now proceed to evaluate this objective function for two cases depending on whether or not

12 is known.

Known Noise Variance. When LT2 is known the second term in Equation 5.29 is
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constant and may be dropped, resulting in the objective:

min -LZ (I- PHs)_U - In (pt(1 - p)' ) (5.30)

Since t is determined for each S, this objective may be viewed as a criterion for choosing S. For

each of the finite number of possible selection matrices S (and its corresponding t), the function

in Equation 5.30 is computed. The Bayes hypothesis test for order selection with known noise

variance is to choose the S for which the computed value of Equation 5.30 is smallest.

This test may be compared to the order selection rule used in [SMB87] in which the

objective function may be expressed as:

min [-T(I- PHS)U +4 (2t - m) "s,  (5.31)

In both rules the first term is data dependent while the second may be viewed as an order

selection penalty function favoring some values of t over others. Figure 5.14 shows a graph

comparing the penalty functions for n = 10, with several values of the probability of impulse p.

The rule of [SMB87] is linear in t. In the figure equal slopes imply equivalent order selection

rules. You can see that for n = 10 the linear rule is most like a Bayes rule with p about equal

to 0.1. The figure also shows that the Bayes rule gives greatest favor (least penalty) to rank

t = np, the expected value of the number of impulses present.

Unknown Noise Variance. When a2 is not known we substitute the ML estimate

into Equation 5.29 as we did for the parameters 0 and €. Minimizing Equation 5.29 with respect

to a 2 gives the following ML estimate of a 2 :

C.- = -r(i _ PHs),. (5.32)

n

Substituting this into the objective function gives

min + 1 In (.2t(I- P s)) - In (p( 1 - p),t) . (5.33)

The first term is constant and may be dropped from the minimization. We may obtain an
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Order selection penalties

4 0 
n .n z 1 0

-~ Scharf & Storey rule
30- Bayes rules p-0.01

>, 20 -- '

-10 4-- + -

p=0.7 1

Order (number of impulses)

Figure 5.14 Two penalty functions for order selection.

alternate expression for this objective function by taking its natural exponential and dropping

a constant multiplier:

min [(M ( I - PHS)U/) (534

The Bayes hypothesis test for order selection with unknown noise variance is to choose the S for

which the computed value of Equation 5.34 is smallest. This test cannot be compared directly

to the tests in which o-2 is known.

Order Selection with Complex Data. When the data I of Equation 5.22 is

complex the approp-Lte distribution for the background noise becomes

Re(L) :.\'(a,-21) I M r(v_) : .V(a , 21) (.5.35)
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The matrix H and the parameters I and ! may also be complex, but S is still a selection

matrix. The only differences this introduces into the objective function for order selection is

the replacement of the transpose by the Hermitian transpose and the replacement of n/2 by n

in the normalization of the Gaussian density.

For o,' known the objective function for complex data is

min [_ ' 'H(I - Pgs) - In (p(1- P)n-)] (5.36)
St L2a 2 ! Ij

The appropriate form of Equation 5.31 for complex data is the order selection rule from

[SMB87]:

min [-' LH(I - PHs)u + (2t - in)] (5.37)

For o.2 unknown the objective function for complcx data is

and the alternate expression for this objective function is

min U - PHs)U), 1
I, L - (5.39)

Simulation results. The order selection rules presented above were tested on sim-

ulated complex data. There are three rules to be compared, corresponding to Equations 5.38,

5.37 and 5.36. The three were tested in parallel on the same data.

We chose n = 10 samples of the same complex exponential signal used to test the KiSS

algorithm. We then added structured noise according to the model, with each vector element

having probability p = 0.1 of an impulse. The impulse amplitudes were chosen with a fixed

magnitude of 5 and uniform random phase in the complex plane. Background noise was added

to the desired SNR (defined the same way as for KiSS tests in Chapter IV).

Table 5. 1 shows order selection performance of the three rules at signal-to-noise ratios

from 10 to 40 dB. The figures in the table are the number of times out of .50 trials that the

correct S was chosen by the rule in question. The performance of the Bayes rule is the best in
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the table, although you can see that the Bayes rule performs about the same as the Storey and

Scharf rule. With unknown noise variance, the Bayes rule consistently chose a rank to high,

and never got it right at any of the tested SNR's. Perhaps this could be improved by adjusting

the normalization in the estimate of the noise variance a 2, as discussed in Section 3.2.

Table 5.1 Order selection performance of three rules.

SNR (dB) 0 10 20 30 40

Bayes Rule 19 14 14 13 14

Storey/Scharf Rule 12 10 14 12 9

Bayes Rule (unknown variance) 0 0 0 0 0



CHAPTER VI

Parameter Estimation in the Structured Noise Model

Recall the structured noise model introduced in Chapter I:

H + b + v

H = [H] H + S~ ] [ + H (.1

n nxk k nxt t n

The goal in this chapter is to estimate the signal component z or the parameter 0 based on

the received data ij. The model matrices H and S are assumed to be known, or previously

estimated as in Chapters III and IV.

We consider three cases of this estimation problem: (1) ,e assume that 9 and 2 are

real or complex unknown parameters and the estimates j and !2 are to be chosen to minimize the

squared norm of the fitting error between (H + SQ) and I. In the real case, this is equivalent

to placing a white Gaussian distribution on v and finding the ML estimators. (2) We assume

that the noise vectors v and I are real random vectors drawn from Gaussian distributions with

known autocorrelations. (3) In addition to the distributions of case 2, We assume that the

parameter vector _ is a real random vector drawn from a Gaussian distribution with known

autocorrelation. These three cases may be summarized according to the density each one

implies for to the data ju

(1) : .V(HO + S2, oI),

(2) L .V(HO,,72I + SR,,Sr). 6.21

(3) : .V(2. c21 + SR,,Sr "- HR,, Hr
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In the least squares (LS) section (case 1), .and !2 are assumed to be real or complex

unknown parameters and the estimates Q and !2 are chosen to minimize the fitting error between

(H0+ Sj) and U. In the minimum variance unbiased (MVUB) section (case 21 the noise

processes v and ! are assumed to be real random vectors drawn from Gaussian distributions

with known autocorrelations. The minimum mean squared error (MMSE) section deals with

case 3. The last section shows a detailed application example for decoding linear block codes

over the complex field.

6.1 Least Squares Estimation

In this section we consider 9 and 2 in Equation 6.2 to be unknown real or complex

parameters and we choose estimates of them which minimize the Euclidean norm of t he residual.

defined as
-= -(HW+ S-). (6.3)

This is, of course, equivalent to an ML estimation problem when the vectors are real and v

is white Gaussian noise. The following orthogonal projection operators will show up in the

solution:

PH = H(HHH) - IHM

PH" = I - Pt,

(6 4)
P, 

= s(s~s)
- i s f

PsH SSSVS

Psoa = I - Ps.
There are several ways to proceed. One way is to estimate on, of the parameters ,_

or '2) as a function of the other, and then estimate the othe'r parameter. Another way is to

simultaneously estimate both of them. The same solution is obtained in either -a.,e. and we

proceed here with the simultaneous estimation by rewriting the modtel quation as

This equation is in the form of an ordinary linear least squares priole, t',r whl,'h 'he -,out in.
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involving the Moore-Penrose pseudoinverse, [H S]# , is easily shown [GVL89] to be

[ I=[H SI~u = ([H S]H[H s])-'[H S]11U

HH H"S 1  HH]66

[SHH SHS s

Now apply the inversion formula for 2x2 block matrices [Kai80] to write the solution explicitly

in terms of H and S. The portion of the solution corresponding to 0 is the parameter estimate

2. (HHH)-IHH[I - S(S"(I - H(HHH)-lHH)S)-iSH.

(I - H(HHH)-HH)]a (6.7)

- (HHH)-1HH(I - S(SHPH.LS)-ISHPH.).

The least squares estimate of the signal x may be obtained by operating on 0 with H

resulting in

= Hj

= EH;SU ,

where EH;s is the oblique projection defined in Chapter II as

EH:S = H(HHP s H )- tH H P s

So the operator which solves this least squares problem is an oblique projection.

Before going on to the other cases of the estimation problem. we give some interpre-

tation and evaluation of the present result. Figure 2.1 in chapter II shows how Euclidean space

can be resolved into three parts. It illustrates the action of Eros on each component of received

data. The range of EHtS is the signal subspace KH), and the null space contains the structured

noise subspace (5). The remainder of Euclidean space. (A) = !H. S) ", .:ompletes the null space.

This leads to the interesting observation that the operator Elts entirely removes the structured

noise, since according to the model, the structured noise lies in the null space )f E11.s At the

same time, the signal. x = HO, is undisturbed by EHs since it lies in the range.

While these properties are highly desirable, there is a tradeoff involvd. The unstruc-

,urd noise v' is not ,talt with as effectively by the oblique projpction EHs .'s It would be by
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the orthogonal projection PH. In fact, while some components of the fu 1l rank noise e will

be reduced or removed, certain components may actually be amplified as shown in Figure 6.1.

This possibility implies that the oblique projection estimator is best used when the structured

noise dominates the full rank background noise. This claim is supported by an observation

about the minimum variance unbiased estimate in Section 6.2.

V

E H;Sa

<

Figure 6.1 Possible effects of oblique projections
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Just how bad is the effect of an oblique projection on the background noise? How can

we evaluate a given oblique projection operator, EHos, in terms of its effect on the unstructured

noise? The singular value decomposition (SVD) of EH;s plays an important role in this analysis.

The SVD of EH;S is

EH;s = UEVH, (6.10)

where U and V are unitary dnd E is diagonal (all are n x n):

UUH = UHU = I

VVH = VHV = I

0 (6.11)

0

0
0.

The diagonal elerrents of E are the singular values of EM~s. Singular values are always non-

negative reals, and as shown in Chapter II the singular values of an oblique projection may take

on values of 0, 1 or any value greater than 1. This is an important distinction from orthogonal

projections, whose singular values are all either 0 or 1.

The worst case noise power gain is, of course, given by the squared 2-norm of the

operator, which is the square of the largest singular value of EH;S. If the noise vector _' is

resolved onto the basis V formed by the right singular vectors of EH;S, then each component

will be multiplied by the corresponding singular value. If v has a spherically symmetrical

distribution, it follows that the average noise power gain, g, is the average of all the squared

singular values of EM.S, of which only k are nonzero:

k

gave =n12
71 ,=t(6.12)

2. > Lr. > ... > 0
L7' - 2 - k 0

We now give a geometric interpretation of this result. From Chapter II we know that

the nonzero singular values of an oblique projection EHs are related to the principal angles

between its range and null space. In the present setting this means that the background noise



112

gain is determined by the principal angles between the signal subspace (H) and the structured

noise subspace (S), with the worst results when the angles are small. With Oi representing the

principal angles we repeat the relation from Chapter II,

1= 
(6.13)

s"= in (ari)'

It should come as no surprise that the performance worsens when structured noise is close to

signal by some measure, such as the sine of an angle between the subspaces.

6.2 Minimum Variance Unbiased Estimation with Real Data

We now return to the model Equation 6.2 and assume for case 2 that all vectors and

matrices are real and the noise processes E and ( are independent normally distributed random

vectors with zero means and known correlations:

v:N(0, R,.),
(6.14)

We do not treat the complex valued vector case here. In earlier Chapters we have treated

a complex vector with independent real and imaginary parts, each of which was distributed

as N(O, 0-21), as a complex normal random vector. But we know no definition for a normally

distributed complex random vector with arbitrary correlation.

Let w = So + v denote the combined noise. Then w itself is normally distributed.

The model takes on the form of the linear statistical model

H = + w,
(6.15)

w:(, P.)

where

R,=,,, R"" + STR,,S. (616)

The unknown parameter 0 is to be estimated. The ML estimator of 9 Sch9l] is also

the minimum variance unbiased (MVUB) estimator of 9. It is given by

= (HTR, H)iHTR-1 (6.17)
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The existence of R1 is guaranteed by the fact that R, is positive definite. To establish this,

first note that R,, is positive definite by the assumption that w is full rank noise. The matrix

added to R~, to form lw is non-negative definite, so the sum remains positive definite.

A signal estimate is obtained as in the least squares section by operating on with H:

j=
(6.18)

-EU

where

E= H(H T,% H)lH TlR-. (6.19)

Once again, it involves an oblique projection, E.

The range of E is the signal subspace H as in the least squares case. Its null space is

not so easily characterized, although the following special case gives some insight and shows an

additional connection to the least squares solution. If both noise processes are white (Ro¢ = 02I

and RUM = aL2 I), then the oblique projection E can be written as

E = H(HT(I + rSST) -H)-IHT(I + rSST)1. (6.20)

where

0/a ,. (6.21)

When r is zero there is no structured noise and E in Equation 6.20 simplifies to PH,

the orthogonal projection onto the signal subspace. On the other hand, when r is large, the

structured noise is the dominant interference. In Chapter II we found that in the limit as r

goes to infinity, the quantity (I + rSST)- 1 converges to Ps.. From this it immediately follows

that

lim E = Et.s. (6.22)
r-00

In other words, when p and v are white noise. the MVUB estimator converges to the least

squares estimator as the structured noise becomes dominant.

In summary. the .IVUB estimator is an oblique projection whose range is (H and
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whose null space moves from (H)L toward (S) as the structured noise power increases from zero

toward infinity. This supports the earlier claim that the oblique projection obtained in the least

squares problem, whose nullspace is (S), is best suited to situations in which the structured

noise dominates the unstructured noise.

6.3 Minimum Mean Squared Error Estimation with Real Data

For case 3 we assume Gaussian distributions on v, .0, and 0:

6:N (a, ROO,), '(6.23)

0 :N(a., Re).

We choose an estimator i to minimize the mean squared error between 2 and x. The solution

is just a special case of the Gauss-Markov estimator, with the correlation matrix RY = L72I +

SROST + HR#OHT containing a term accounting for structured noise. The solution,

= R = HReeH T(orI + SRST + HR,,HT)-Z , (6.24)

may be found, for example, in [Poo88]. We note that 2 is not an oblique projection of -4 in this

case, nor in the Gauss-Markov estimator without structured noise. Also unlike the previous

results, this solution is valid even if the subspaces (H) and (S) are overlapping. This can be

interpreted to mean that even with overlapping subspaces, the information contained in the

distribution functions allows some probabilistic separation of signal and structured noise.

6.4 Application to Decoding of Block Codes

In this section we present an example using the subspace identification and parameter

estimation techniques we have developed. This work was originally published by Scharf, Mathys

and Behrens [SMB87]. Since then, Mathys has submitted a paper [Mat90] for publication that

continues and expands the work.

When the problem of decoding a linear block code is examined from the perspective

of estimation theory it is seen to be equivalent to the problem of parameter estimation in the
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Linear Statistical Model. In this section we exploit that equivalence to derive a procedure for

decoding linear block codes over the real or complex field. We develop a decoding procedure

based on a noise model that includes large impulsive errors in a few positions of the codeword

as well as minor errors in all positions. The resulting decoder can be represented as an oblique

projection operator determined by a finite search algorithm. Simulation results are given which

show the decoder's performance in a specific situation.

Several authors have recently contributed to the extension of results from finite-field

coding theory to the infinite field of the real numbers and its extension fiekd, the complex

numoers. Wolf [Wol831 has noted the effectiveness of error control coding against impulsive

errors in the complex field, and has made the important observation that the error correction

capacity of such codes is potentially nearly twice what finite-field coding theory would lead one

to expect. Marshall [Mar85 has addressed the construction and implementation of complex

number codes for impulse error correction, with attention given to the dynamic range of the

elements in the codeword. Recent work in signal restoration has also been applied to complex

number codes by Marshall [Mar86].

Practical decoding algorithms for impulse errors in complex number codes must con-

sider that the codeword may also be subject to minor errors such as roundoff and/or background

channel noise in every element. Wolf [Wo183] and Kumaresan [Kum86] have presented decod-

ing strategies which account for such minor errors while protecting against major impulsive

errors. The decoder we develop in this paper shows significant immunity to minor errors in

correcting multiple impulse errors. In addition, some protection is provided against the minor

errors themselves.

Block Codes and the Linear Statistical Model. We wish to recover the values

of real or complex numbers that have been coded and transmitted over a channel subject to

impulse noise and possibly also minor errors (background noise) in each value transmitted. By

the use of appropriate linear block codes, the impulse errors can be detected and removed. In

the absence of background noise, this removal can be entire for sufficiently few impulse errors.
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One way to specify or represent any particular linear block code is by its encoder

matrix, which we will call H. The information values to be sent are blocked into m-vectors 8_,

and the codeword vector a has length n (n > m). Thus the dimensions of H are n by m. The

operation of encoding is expressed by the matrix-vector equation z = HO

[z 1 , [hi1  * him' i 9~1

- t:0n] (6.25)

lx,J L h *- hm- ]

The elements zi, hij and 9i may be real or complex, and H is full rank (rank m) for all uniquely

decodable block codes. The received data g is the transmitted codeword x_ plus the channel

noise e.

- HO + . (6.26)

Equation 6.26 has the form of the Linear Statistical Model. Results based on this connection

will be used in the development of the decoder.

Decoding for Impulse Noise Only. By impulse noise we refer to an n-vector b,

which has zeros in all but t positions (t < n - m). Such a vector has Hamming Weight equal to

t, the number of non-zero entries. The nonzero elements may be large. In the next subsection

we consider the combined effects of impulse noise and minor background noise, but at present

we limit our consideration to impulse noise only. In this case the channel noise in Equation

6.26 is e = b.

We wish to determine the value of the impulse noise b by an examination of the

received data I, then to subtract it from U to obtain the transmitted codeword x_. To ensure

that the estimate is sparce according to the impulse noise model for b, we represent b as the

product of a selection matrix and a t-vector, as in the structured noise model described earlier:

b = S2. (6.27)

The vector contains the (non-zero) amplitudes of the impulse errors. Each column of the
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n x t selection matrix S corresponds to one impulse error and determines its position. In any

column there is a 1 in the position of that impulse error and zeros in all other positions. The

order of the columns is not significant; all selection matrices which are column permutations of

one another represent the same set of impulse positions and are considered equivalent.

We separate the estimation problem into two parts: the estimation of S, which is a

subspace identification problem, and the estimation of the parameter . The subspace identifi-

cation problem is equivalent to determining the number of impulse errors and their positions,

and is accomplished by a search process through the fixed, finite space of possible selection

matrices. The parameter estimation problem is equivalent to determining the amplitudes of

the impulses, and is accomplished by an oblique projection.

We give here an alternate derivation of the oblique projection operator EH;S that

solves the estimation problem, using the coding theory concepts of parity check matrices and

syndromes. One way to split the ,Itqervation space R'1 (or C) which contains the data U is into

two linear subspaces: the m-dimensional code space spanned by H, and its (n- m)-dimensionat

orthogonal complement (H)-" . We define U as an n by n - m matrix which spans the subspace

H'. This gives us the property UHH = 0. Coding theorists may recognize U as the parity

check matrix for the code, which of course depends only on H and can be determined in advance.

The parity check matrix U is not unique, and we find it advantageous to use an orthonormal

span of the specified subspace, giving us the additional property UHU = I. Application of the

parity check matrix U to the received data vector U produces the syndrome -, a vector with

length (n - m):

U_-= uH= U"(HO +b)

(6.28)
- U = U"So.

The syndrome is independent of the codeword because UHH = 0. What remains is

isomorphic to the projection of the impulse noise vector b onto (U), the subspace orthogonal

to the code space. The projection of b onto (U) is, in fact, equal to U_- = UUHb. We use the

term syndrome space to refer to either the (n - m)-dimensional space in which the syndrome
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1 lies, or the isomorphic subspace of R' (or VT1) in which U; lies. The impulse noise vector b

may be resolved into a component in the code space and a component in the syndrome space.

The component in the code space is indistinguishable from a legal codeword, so we turn to the

syndrome as the basis of our estimation process.

If we assume S has already been estimated a 9 then the system of equations repre-

sented by . = UH S€ is overdetermined (recall t < n - m) and can be solved in a least squares

sense to obtain . Minimizing the usual least squares cost function Hz- UH S-2, the solution

[GVL89] is

.= Qz; where Q = (SuuHS)-SU. (6.29)

is the pseudoinverse of UH S. Existence of the necessary inverse in Equation 6.29 is

related to the relationship between the code space and the space spanned by §, in which b lies.

If the two share a common subspace of nonzero dimension, then that subspace of S is orthogonal

to U and the product UHS will be rank deficient. The physical interpretation is that some

impulse noise vectors in the § subspace are then legal codewords. This situation can be avoided,

and the existence of the required inverse guaranteed, by choosing the code appropriately. For

example, codes constructed by application of BCH or Reed-Solomon techniques to the field

of reals and its extension field, the complex numbers, have codewords with Hamming Weight

> n - m (except the zero codeword). In this case no pattern of n - m or fewer impulses has

sufficient Hamming Weight to be a legal codeword.

We now observe that in the present case (with only impulse noise present) the overde-

termined system of equations in Equation 6.28 is actually consistent if the estimate of S is

correct. This is simply because, according to the model, the syndrome z originated from some

actual . as UH So. The search for §, then, is a search for the smallest (minimum width t) se-

lection matrix for which Equation 6.28 is consistent. Or, equivalently, a search for the smallest

selection matrix for which the syndrome : lies in the subspace spanned by UH S.

After determining S. Equation 6.27 is used to synthesize b. the estimate of the impulse
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noise vector:
= s= sq

S(S UUHS)-Is UUH (6,30)

=E E;HtZ

Comparison with the oblique projection formulas in Chapter II shows that Ei H is the oblique

projection whose range is K S) and whose null space contains (H) and the remaining subspace

orthogonal to (H) and K 9). Subtracting 3 from the data U gives the codeword estimate 2:

2 b

(I - E ) (6.31)

(P(H; )L + H;i)IL.

Note that the term P(Hg) .U will be zero in the absence of background noise, so 2 lies in the

code space (H) and is an oblique projection of IL:

2 = E H;g§ t.(6.32)

Figure 6.2 shows a block diagram of the communication system based on these principles.

After error correction, the decoding process to recover the original information vector

O simply involves operating on the codeword estimate with H#, the pseudoinversc cf H:

?= H#2 = (HHH)-Hh12. (6.33)

Finally, note that under certain conditions the estimate 2 is exactly equal to . in the

absence of background noise. There are two conditions. First, the subspaces (H) and (S) must

be disjoint so that the inverse in Equation 6.30 exists. Second, the smallest (least width) matrix

S for which Equation 6.29 is consistent must be unique. This uniqueness can be guaranteed

only for appropriate codes (such as BCH and Reed-Solomon) and with t < -'. However,

if p arises from a continuous probability distribution, then the circumstances which lead to

non-uniqueness occur with probability zero for t up to n - m - 1. Unique. "qs implies that the

search will produce § = S. from which it follows that

.= E..f. = . '.4 )
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H + EH;S --X O
codeword dt

Figure 6.2 A Communication System

This implies that 2 = 1; so with probability one, the code can correct t < n - m impulse errors.

Decoding for Impulse and Background Noise. Now we consider the case in

which minor errors (background noise) may be present in all codeword positions in addition to

the major impulse errors. For simplicity of analysis the background noise v is assumed to be

white and Gaussian: E{kwH } = a2I (E{. } is the expected value operator). In the complex

case we assume that the real and imaginary parts are independent white Gaussian random
#2

vectors with variance -2 in each part. The effect of the background noise on the decoding

process is twofold. It corrupts the codeword and perturbs our estimate of the impulse errvrs,

We deal first with estimation of the impulse errors in the presence of the background

noise. Then we will use whatever error correction capacity remains to reduce the background

noise effects on the codeword itself. We use the same basic approach for estimating the impulse

errors as was used without background noise, with the channel noise e now equal to b plus v.

The new version of Equation 6.29 for the syndrome is
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-_= uHU= UH(H + so + v)

= (UffS) + 1__; (6.35)

where w = uHv.

Observe now that Equation 6.35 is a Linear Statistical Model in the syndrome space,

for the syndrome z Furthermore, with U being orthonormal (UHU = I), the new noise vector

to retains the whitkness property of v:

E{ww- j = E{Uff iVHU} = UHE{"H}U

(6.36)

= UH(a' I)U = a'UHU = a-I.

As before we determine S by a search of all selection matrices, but because of w we

can no longer expect an exact solution. For each S there is an associated _, given by Equation

6.29, which minimizes the least squares cost function 11: - UH§ 1 12. For a given t (estimated

number of impulses) we consider the best S to be the one for which the minimized cost function

is lowest. This gives us one S for each candidate F. For these, the least squares cost decreases

as t increases, but the amount of decrease tends to become small for t > t. This is because the

t large impulse errors make much greater contributions to the norm of the syndrome than the

smaller background noise errors, and thus tend to be corrected first.

Choosing F too small results in uncorrected impulse errors, while choosing it too large

inappropriately treats some background noise errors as impulses. The latter reduces our ability

to deal appropriately with the white background noise after removal of the estimated impulse

noise. We make the final choice of t, and thus of S. by an order selection rule as discussed in

Chapter V. Once S and its associated 2 are determined. the estimated impulse noise vector

can then be synthesized according to Equation 6.27 and subtracted from the data:

=- SoP

(13.37)
= Ei:HU.

The communication system so far is almost identical to the one for impulse noise only.

shown in Figure 6.2. The only difference the background noise brings is in the selection :riteria
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for S. Unlike the case without background noise however, the result , is not yet the codeword

estimate. It does not necessarily lie in the code space and we can still remove some of the

effects of the background noise.

We now proceed to deal with the effects of the background noise on the codeword.

Under the assumption that the impulses have been correctly located (i.e., S = S), E ; H has the

properties EiH, = I and EiHb = 0. In accomplishing the elimination of the impulse noise,

though, E 9 H colors the background noise. The noise affecting J is not white. In our earlier

paper (SMB87], we derived the autocorrelation matrix for , prewhitened , and then applied a

least squares estimator to determine j. This process lead to another oblique projection operator

ER, and the final codeword estimate was obtained by the sequence of two oblique projections

- ER(I - E:H)U. (6.38)

As it turns out, further simplification is possible. The product ER(I - E;:H) is equal to

,- E and from the three-way resolution of identity in Chapter 11 we can write

(PH(I - E h rwH)e

=PH((-Es. + EH:S)!

(6.39)

= PEL.

Therefore, the error correction decoder involves one oblique projection and a search for the

correct selection matrix. This is exactly the result one would expect from Section 6.1 on least

squares parameter estimation in structured noise.

Simulation Results. We now present the results of a simulation of the system in

Figure 6.2. For this example we have used an n = 7 BCH code wherein all codewords have

zeros in positions 3. 4, 5 and 6 of their DFT, allowing rn = 3 information values. The -ncoder

matrix H for this case is
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We fixed 0 and b for 50 realizations of the background noise v,

0 "
1.7- jl.7[ 0.5 - jO.25 1 3.9 - j3.9

_= -0.75 - i0.5, 0 (6 41)
0.25 + j0.75 0

0
L 0 J

The order selection rule was adapted to the complex case from [SchS71.

Signal to noise ratio (SNR) is defined as nHxln (2, where c-2 is the variance of each

element in v (real and imaginary parts have variance lo-2 each). But SNR is irrelevant in the

syndrome space where estimation of the impulse errors occurs. The relevant parameter there is

the major to minor noise ratio (MMNR) defined as bHb/no"2. We express both in dB by taking

10 times the base-10 log.

The plot in Figure 6.3 shows how close the final estimates of the information values

were to their true values 0. The relative error shown is 9; - 911'2 i '9 2  The N.\I.NR used

represents quite substantial background noise, and in most cases S was correctly letetmined.

Conclusions. We have derived an algorithm for decoding linear block codes over

the complex field. First the number and locations of the impulses are ueterrmned. effectively

identifyil5 .structured noise subspace. Then the received data vector is operated on by the

oblique projection operator whose range is the code space (signal subspace i and whose ntull space

contains the identified structured noise subspace. Simulations verify that the deroder p,'rforms

well.
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Figure 6.3 Final Estimates of Information Values.



CHAPTER VII

Conclusions

We have presented in this dissertation a collection of advancements in digital signal

processing theory and practice, based on the use of linear subspaces. Most of the new algorithms

are related to our proposed "structured noise model", wherein both the signal and a component

of the noise are assumed to lie in low rank linear subspaces. We have argued that linear modeling

of noise is often appropriate for the same reasons that linear modeling applies to signals.

Oblique projection operators occur naturally in the solution of estimation problems

in structured noise. We consider the primary theme of this dissertation to be the emphasis

on oblique projection operators as useful tools in signal processing. To support and develop

that notion we have presented research that can be grouped into three areas: mathematical

contributions, subspace identification techniques, and estimation problems in structured noise.

In the following sections we discuss each of these areas in terms of implications, limitations.

and possible extensions.

7.1 Mathematical Contributions

Most of the mathematics used here is not new. Since it is mostly of a linear algebraic

nature, it can be found in such books as the classic Matriz Compufalzons by Golub and Van

Loan [GVL89J. But there are a few mathematical results we have not seen elsewhere.

The equations in Chapter 1I for construction of an oblique projection with a specified

range and null space are our own, although they are of such a fundamental nature that we

would not be surprised to discover them in earlier works. These equations give two different

expressions for the same oblique projection matrix. These expressions are essential to the signal

processing applications of oblique projections. both for analysis and implementation.
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The natural geometrical interpretation of oblique projections built from our expres-

sions is a three-way resolution of Euclidean space into the components of signal, structured

noise, and the remainder of the space. This is expressed mathematically in our three-way reso-

lution of the identity matrix as the sum of two oblique projection matrices and one orthogonal

projection matrix.

We have demonstrated a link between oblique projections and orthogonal projections

by deriving a coordinate transformation that makes an oblique projection problem into an

orthogonal projection problem. This gives researchers the option of studying the properties of

the coordinate transformation and combining them with the known properties of orthogonal

projections as an indirect approach to the study of oblique projection operators.

The singular values of an oblique projection operator are critically important in ascer-

taining the effect of that operator on unstructured background noise. We have pointed out that,

unlike an orthogonal projection operator, an oblique projection may have singular values larger

than unity. If any of those singular values are too large, the benefit gained from elimination

of the structured noise may be outweighed by amplification of the background noise. We have

quantified that relationship in Chapter VI. We have alsn discovered a geometric interpretation

of the singular values of an oblique projection, giving a relationship in Chapter II that connects

them directly to the principal angles between the range and the null space.

The main limitation of the mathematical results on oblique projections is simply

that the range (signal subspace) and null space (structured noise subspace plus remaining

space) must be disjoint. The intersection between range and null space must include no vector

other than the zero vector. In a signal processing context this means that we cannot build a

projection operator to completely separate signal and noise when some structured noise vectors

are identical to some signal vectors.

7.2 Subspace Identification Techniques

Before one can build an oblique projection to separate signals from structured noise.

one must know the signal subspace and the structured noise subspace. While it may occasionally
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be possible to determine both subspaces in advance through theoretical considerations, it is very

important in many cases to be able to identify these subspaces from observed data and limited

knowledge of the nature of the signals.

The principle of Maximum Likelihood is an old standby for estimation problems. We

have adopted it in many of our subspace identification techniques. However, we recognize that

it is not always an appropriate way to solve estimation problems. In Chapter III we give a

critical evaluation of the Maximum Likelihood principle and an example using a quadratic

equation to illustrate the pitfalls of blind application of ML. Our purposes in including this

evaluation of ML are to warn the reader against blind application of our subspace identification

techniques, to suggest the adaptation of our techniques to some kind of MAP estimation rule

where appropriate, and to make a statement of our reservations about the careless use of ML.

The easiest class of subspace identification problems is signal subspace identification

without structured noise. In this class we have presented improvements on existing algorithms

for the nonparametric problem whose solution is obtained with the SVD, and for the parametric

problem with complex exponential signal modes. The latter problem frequently needs to be

solved under constraints regarding the location of the roots, and we have presented an extension

of the "KiSS" algorithm that incorporates constraints. We have also found elegant expressions

and interpretations for the gradient and Hessian of the KiSS objective function for complex data

and parameters. A Newton algorithm can be implemented using these gradient and Hessian

expressions.

The next most difficult subspace identification problem is that of identifying a struc-

tured noise subspace when you know your signal subspace. The coding example of Chapter VI

falls into this category. The "KiSS with structured noise" algorithm of Chapter IV solves an

equivalent problem, since it identifies a signal subspace when the structured noise subspace is

known.

The most difficult problem is the simultaneous identification of both signal and struc-

tured noise subspaces. It is clear that this cannot be done without some prior knowledge that
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will allow us to distinguish between the two. We have approached this problem by assuming

the signal is a sum of complex exponentials and the structured noise is impulsive. Under these

conditions the KiSS algorithm with structured noise can be used within a combinatorial search

to locate the noise impulses. The results have been rather unsatisfactory.

A problem similar to subspace identification is that of updating existing signal and/or

noise subspaces based on new data. For signal subspace updates without structured noise we

have presented in Chapter III a technique using Total Least Squares. We have then derived an

extension of that technique that allows simultaneous updates of both signal and noise subspaces.

This technique is suitable for adaptively identifying slowly varying subspaces.

In Chapter V we have address the issue of order selection when identifying subspaces.

We have proposed a new order selection rule for rank reduction in the Linear Statistical Model

without structured noise based on two sequential applications of the principle of Maximum

Likelihood. The new rule performs only slightly better than existing rules and is rather ex-

pensive computationally. The most intriguing aspect of this result is the concept of multiple

applications of ML.

We have also derived in Chapter V a Bayes hypothesis test for order selection in the

identification of structured noise subspaces. Even with its solid theoretical foundation, the

Bayes rule performs only a little better than existing rules that are rather more ad hoc.

7.3 Estimation Problems in Structured Noise

We have derived signal estimators and parameter estimators for several structured

noise problems, distinguished by the amount of statistical information available about the

underlying processes. In the first case, without probability densities on the signal or noise, it

was found that the least squares estimator of a signal in structured noise is the oblique projection

of the received data vector onto the signal subspace with the structured noise subspace in the

null space of the projection.

When a Gaussian density function is placed on the parameter vector of the structured

noise term in the model the solution still involves an oblique projection whose range is the
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signal subspace. The null space in this case is not perfectly aligned with the structured noise,

but tends toward the structured noise subspace when the structured noise dominates the back-

ground noise. On the other hand, as the relative structured noise power decreases, the oblique

projection converges to the orthogonal projection onto the signal subspace.

Finally we have given an example application in the decoding of linear block codes

over the Real/Complex number field. This application illustrates both subspace identification

and parameter estimation aspects of structured noise processing.

7.4 Extensions

When identifying impulse noise subspaces, the combinatorial search for the best se-

lection matrix can become impractical for large data lengths. Further study is warranted on

ways to reduce the search space. For example, with BCH codes the Prony type method of

Kumaresan, Tufts, and Scharf [KTS84] may be used to obtain a starting point for the search.

The simultaneous identification of signal and structured noise subspaces has proven

to be a difficult problem, and our current approaches are not adequate. We explain in Chapter

IV that there appears to be a connection between the subjective smoothness of the KiSS

objective function and the correctness of a candidate structured noise subspace. We suggest

future research to quantify and exploit this connection and try to develop a better method of

simultaneous subspace identification.

Signal detection problems in structured noise remain open as a possible extension

of this research. The coordinate transformation relating oblique and orthogonal projections

should be of use here in specifying invariance conditions for the detector. For example the

group of transformations which characterize invariance to structured noise and to rotation of

the signal within the signal subspace is given by

g(1) = F-' [(UHRHTHH + P FL+ UH. ]  (7.1)

where F is the coordinate transformation of Chapter II, RH is any rotation in the signal

subspace, UH is an orthogonal span for the signal subspace (H). UH. is an orthogonal span of



130

(H) ', and t is any (n - rn)-vector. The maximal invariant statistic for detecting an unknown

signal in a known signal subspace, with known noise variance, under these invariance conditions

is

eLEHIsf EH;s 7L2
na 2  (7.2)

Detection statistics could be derived for other cases of known versus unknown signal, noise

variance, and structure noise.

The ML esitmators of noise variance in Sections 3.2 and 3.4 provide an interesting

area for further study. As mentioned at the end of Section 3.2, the normalization by n would

seem to be better replaced by a normalization by n - r, since we have noise power in only

n - r dimensions available for estimating a'2 . A study of the mean and variance of these ML

estimators of o'2 may reveal a correctable bias. The difficulty is in finding the expected value

of a singular value of a matrix. The way around this difficulty may be in finding an alternate

expression for the estimator that does not involve singular values.

The possible role of oblique projections in spectral estimation should be examined.

This would include investigation of quadratic forms in oblique projections, and possible fre-

quency domain analogs of oblique projections.
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APPENDIX A

MATLAB Code for the KiSS Algorithm

The following code implements the KiSS algorithm with constraints and optionally

with structured noise. The main function KISS uses subfunctions AAINV, BUILDB, KSS-

DATA, MOD, and ORTHPROJ also listed here. For phase 2, the KISS function can use

UMSOLVE, available through the MATLAB user group.

function Ea,b.errnorm.thpath,T,citerl,iter2,termcode,phla,errnorml] =
kiss(y.mconstrph2,toll,tol2,usecircaOS,useglob.fdebug)
% Ca,b.errnorm,thpath,T,c,iterl,iter2,termcode] - ..
% kiss(y,m,constr,ph2,tolltol2,usecircaO,S,useglob.fdebug)

% This function implements the KiSS algorithm for estimation of
% parasmeters of superimposed sinusoids. Inputs:
% y - observed data vector (required).
% - model order (required).
% constr - Constraint option:
% £1] = Nontriviality constraint only.
% 2 - conjugate symmetry constraint.
% 3 - Real coefficients.
% 4 = Real and symmetric.
% S - conjugate symmetry plus "project to circle" contraints.
7 6 , real symmetry plus "project to circle" constraints.
. ph2 - Phase 2 option:
% [0] a No phase 2.
% I - Phase 2 by constrained Evans/Fishl method. (is it right?)
. 2 = Phase 2 by Newton's method.
% toll - Phase I convergence tolerance (default-eps-(I/3)).
. to12 - Phase 2 convergence tolerance (default=sqrt(eps)).

% usecirc - permission to use circulant technique for inverse.
%. aO - starting point for AR (denominator) parameters.
% S - structured noise subspace.
% useglob - flag indicating that the following global variables
%have been declared before calling kiss:
. kissglobY,kissgloby.kissglobTkissglobc.kissglobYa.
% kissglobQ,kissglobA,kissglobu,kissglobnhat
%Doing this saves much computation for Newton phase 2.
% fdebug - Debug mode flag. Show progress when set.

% Outputs:
% a - AR (denominator) parameters.
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7 b - MA (numerator) parameters.

7. errnorm - fitting error norm.
% thpath - sequence of iterates of theta.
% T,c - constraint model, a - Tetheta+c.

% iterl,iter2 - number of iterations in each phase.
% termcode - from the Newton phase 2 (see umsolve).

% phla - AR parameters after phase 1.

% errnorml - fitting error norm after phase 1.

% Richard T. Behrens, May 1990, August 1990.
7.

if (nargin < 11)
fdebug - 0;

end

if (nargin < 2)
clc

snr - input('Enter snr for kssdata: ');

[y,sigmal - ksadata(srnr);

n - 25;

m - input('Enter model order: ');

fdebug - 2;

else

[n,k] - size(y);

if (k > I)

if (n > 1)
error('First input argument must be a vector.'

end

y y.,;
n -k;

end

end

if (mod(m.2) - 1)
isodd 1 1;

q - (m-1)/2;

else

isodd = 0;

q = (m-2)/2;

end

if (fdebug-2)

constr - input('Enter constraint option: ');

ph2 - input('Enter phase 2 option: ');
toll - input('Enter phase I tolerance: ');

to12 = input('Enter phase 2 tolerance: ');

usecirc = input('Permission to use circulant inverse: ');
S - input('Structured noise subspace: ');

useglob - 0;
f debug-1;

else
if (nargin<3), constr,,]; ead

if (nargin<4). ph2 0; end
if (nargin<5), toll ( ]; end

if (nargin<6). to12 - 0; end
if (nargin<7), usecirc - []; end

if (nargin<8), aO - []; end
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if (nargin<9), S - 0; end

if (nargin<1O), useglob - C]; end

end

% Set up defaults.

if isempty(constr), constr-i;, end

if isempty(ph2), ph2 - 0; end

if iseupty(toll). toll - eps-(l/3); end

if isempty(tol2), tol2 - sqrt(eps); end

if isempty(usecirc),
usecjrc - -M-(constr.-4)I(constr-'6)) k (iod(n,2)-1) k iaodd);
usecirc - usecirc k (n > 6*m); % An approximation of when it pays.

usecirc - 0; %. Override and disable circulant inverses.

end

if isempty(useglob),.useglob =0; end

if (C- isezpty(S))&ph2'-0fl
disp('Cannot use phase 2 with structured noise.')

ph2 - 0;

end
Y - toeplitz~y((M+1):n),y((s+1):-l:1));

if (constr-wl)

T - Czeros(l.2em); eye(m) jeeye(m)J;

c - [I; zeros(m,1)];
end

if ((constr-2)1(constr-5))

if isodd

T - [[zerosOl,q); eye(q); jay(q); zeros(l,q)) Ejseye(q+l); -jsjay(q+l)JJ;

c - El; zeros(2*q,l); 1);

else

T -E~zeros(l,q+l); eye(q+l); jay(q) zeros(q,l); zeros(i,q+1)3

Cjeeye(q+1); zeros(l~q.1); -j*jay(q+1)]J;

c - [l; zeros(2*q+1,l); 1);

end

end

if (constro-3)

T - zeros(lm); eye(s));

c - (l; zeros(m,l)];

end

if ((constr-4) I(constr-6))
if isodd

TF - [zeros(l.q, ;eye(q); jay(q); zeros(l,q)];

c -Cl; zeros(2eq,l); 11;

else

TF - Czeros(l,q+l); eye(q+l); jay(q) zeros(q.l); zeros(l~q+l)]:

c - [I; zeros(2aq+l,t); 1);

end

Ytilde * T;

[k,q] size(T): %. Hereafter, q is the length of theta.

if isempty(aO) %. start with Prony (or constrained Prony).

Q - Vy

theta - -real(Ts*Q*T)real(T'eQoc);

else
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theta - pinv(T)*(aO-c);

if any(- luear(T*theta+c,aO))
erruag~initial parameter aO did not satisfy constraints))

end

end

if (constr>5S)

theta - projroot(theta,T,c);

end

thpath - theta;

iteriO0; iter2.sO;

if fdebug

disp('Ready to start phase 1 iterations.')

keyboard

e.4d

if (tolil'O)

old - zeros(q,l);
while ((-- all (near(theta -Id. toll))) 9:(iter l< 10)) 7.phase 1 iteration
if fdebug

c

disp(['Phase 1, iteration 'num2str(iterl) '. '2)

thsp(ta ea-1

tihethea

cig

plot (thpath')
pause (5)

end

old - theta;
if isempty(S)

Q - Y 'eaainv(theta,T,c,usecirc ,n) *Y;

else

CaaiA2 aainv(theta,T,c.usecirc,n);
ap -aai*A'; aps - ap*S;

Q Y'*(aai - aps'sinv(S'*Aeaps)eapsl)*Y;

end

theta - -real(T'*Q*T)real(T'*Q~c);

.hpath - (thpath theta);

iteri - iteri + 1:

end
end

phia - Tatheta+c;
A - buildb(phla,n);

e aorthproj(A)*y;

errnorml a norm(e);

if (ph2==1)

old - zeros(q,l);

while (- all (near (theta, old, tol2))) 7 phase 2 iteration
it f debug

c

disp(E'Phase 2, iteration ' num2str(iter2) '2

disp('theta -=

theta
pause(s)
c lg
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plot (thpath')

pause (5)

end
old a theta; %. (not sure if phase 2 is correct

[Q.Aj - aainv(theta,T,c,usecirc,n); % for T other than idendity).
W- A*Q;

d nAIsy;

L - zeros(n,O:)
for k-l:m

dak a zeros(m+1,i); dak(k~l) - 1;

dAk - buildb(dak,n);

dWk - Wdk - W*(dAk'.A + ldk)Q

L(:,k+l) - dWk*d;
end

U -(LI *W);
Q- tUeY;
theta - -real(T'*Q*T)real(T'aQec);

thpath - [thpath theta);

iter2 - iter2 + 1;

end

end

if (Ph2=S2) % Phase 2 by Newton's method.
fparama EY; T.'; c.'; usecirc n useglob zeros(1,m-2Y1;

details w zeros(17,1);

if fdebug, details(l) -1; end %. (print trace)

details(2)-2; 7. (use the hookstep)
details(3) - 1; % (don't, use secant update)
details(4) - 1; % (use analytic gradient)
details(16) a1; % (scale by starting point)
details(17) - 1; 7. (use analytic hessian)

[theta,termcode,path) - .
uimolve('kissf' ,theta,details,fparam, 'kissg', 'kissh');

iter2 =length(path)-2;

thpath = thpath path(2:.(length(path)-I),:)'];

if ((termcode-.2)I(termcode--3))
7. Because the desired minimum is rather deep and narrow we sometimes

% need to ease up on gradtol (so the gradient needn't get so small),

% and on steptol (so we can take very tiny steps).

% disp('Tryinging harder to converge.')

details(4) a 0; 7. (don't use analytic gradient - for kicks)

details(8) - eps-(1/3); % (ease up on gradtol)
details(9) - 2*eps; 7. (steptol--allow very tiny steps)

details(17) - 0; %. (don't use analytic hessian - for kicks)

[theta,termcode~path) - .
umsolve('kissf' ,theta.details,fparam, 'kissg'. 'kissh');,

iter2 *iter2 + Jlength(path)-2;

thpath E thpath path(2:(length(path)-1),:)'3;

end
end
if ± debug

clg

plot (thpath')

title('Final KiSS convergence path.')

pause
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cig
unitcirc
hold on
plot(roots(Tetheta~c) , x')
title('Final KiSS root positions')
pause(S)
hold off
ai( 'normal')
end

%. Compute the coefficients and the final error

a - Tatheta+c;
A - buildb(a~n);
e - orthproj(A)*y;
h -y - e;

HI toeplitz(h(1:a),Ch(1); zeros(m,1));
b -Hlwa;
errnoru - nora(e);
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function EQ.A) - aaiznv(theta,T,c,usecirc,n)
% [Q,A) aainv(theta,T,c~usecjrc,n) formsa the toeplitz coefficient matrix
% A from the prediction polynomial aaT*theta+c. Then Q, the inverse of
% A.'.A, is computed either directly (if usecircwO) or by a fast algorithm
% using a circulant matrix (if usecirc-1).

% Richard T. Behrens, May, 1990.

[m,q) -sizeC?);

a* a- 1;

A - buildb(T*theta~c,n);

tn~klasize(A);
if usecirc
v a

c - v + EQ conj(v(k:-1:2))];
Cinv a circinv(c);,
qq -(ml:-:)

U a Heye(m); zeros(k-in,m)]
[zeros(k-m~m); hankel([zeros(m-1,1); qq(1)], qq))];
VC a Czeroa(m,n-2*m) toeplitz([conj(qq(I)); zeros(m-1,1)),

conj(qq))]; Crot9Oeye(n)) zeroa(m,k-m)]]*Cinv;

Q - Cinv + Cinv*U/(eye(2*m) - VC*U)*VC;
else
Q - inv(A'*A);

end
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function B a buildb(b,n)

% B - buildb(b,n)

%. This function builds the toeplitz matrix B from the coefficients b.
% The result B spans the perp-space to a signal built from powers of
%. the roots of the polynomial b. The size of B is n by i.-m where m
% is the degree of polynomial b.

% This B is as defined by Bresler k Macovski, and is the hermetian
%. transpose of the B defined by Kumaresan, Scharf and Shaw.

a -length(b)-I;
B -toeplitz([flipud(conj(b)) ; zeros(n-m-I,1)],[conj(b(m+l)); zeros(n-m-l,i)]).
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function [ynnorm - kssdata(snrfixedn)

7. Cysigma] a KSSDATA(SNRfixedn) for fixed - 0, or
7. [y,nnorm] - KSSDATA(SNR.fixedn) for fixed - I
7. generates a signal x(i) according to the model given in the Kumaresan,
7. Scharf and Shaw paper (same data as Tufts k Kumaresam). It generates

7. samples for i - 0:(n-1) of
7.
7. x(i) - exp(j*omegal*i) + exp(j*pi/4)*exp(j*omega2*i)
7.
7. with onegal - 2*pi*0.52

7. omega2 - 2*pi*O.S0

7. Noise is added to obtain y(i), with any desired input SNR. If fixed-O
7. the noise is gaussian with the right EXPECTED snr, if fixed-i the noise
7. is sperically symmetrical with the right EXACT snr.
7.
if (nargin < 2)
fixed a 0;
end

if (nargin < 3)
n = 25;

end
omegal - 2*pi*0.52;
omega2 - 2*pi*O.S0;
xi a exp(jsomegal*(O: (n-i))');

x2 - exp(jepi/4)eexp(j*omega2*(O: (n-i))');
x a x1 + x2;

if (nargin < 1)
snr - input('Enter desired input signal to noise ratio: ');

end

if fixed
nnorm - sqrt((xl'*xl)/(10 (snr/10))) ;

else

sigma = I/sqrt(2*1O-(snr/10));
end

rand( 'normal')
noise - rand(ni) + j*rand(ni);

if fixed
noise - (nnorm/norm(noise))*noise;

else
noise - sigma*noise;
end
y a x + noise;

if ('- fixed)
nnorm - sigma; 7. return sigma instead.
end



theta-theta;function Eml - mod(x,n)14

%Computes x modulo n. If x or n is not an integer, it is first rounded.

%Neil H. Endsley 4/87.

y - round(x);
k - round(n);
a - y - k*fix(y/k);
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function [pk] - orthproj(h)

%
% [P,KJ = ORTHPROJ(H)
% P - ORTHPROJ(H)
z
.Returns the orthogonal projection matrix P whose range is identical to
% the range of H. Optionally returns K, the rank of P. A projection is
% eidempotent and hermetian symmetric (i.e. P*P=P and P'-P). If H is

% full rank the projection is computed directly (without factorization).
.The SVD is used if H is rank deficient.

% Richard T. Behrens Nay 22, 1987.
7.

k-rank(h);

[mn]-size(h);
if k--n

p.(h/(h'*h))*h';
else

Cu,s,vJ - svd(h,O);
p . u(:,l:k) * u(:,l,k)';

end


